State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.).
Peking-Tsinghua Center for Life Sciences, Beijing, China (R.-P.X.).
Circ Res. 2022 Dec 2;131(12):962-976. doi: 10.1161/CIRCRESAHA.122.321055. Epub 2022 Nov 7.
As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions.
Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice.
We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53 phosphorylation was mediated by GSK3β (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3β-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3β, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting.
S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.
作为细胞膜修复机制的一个组成部分,MG53(mitsugumin 53)对于缺血预处理和后处理诱导的心脏保护很重要。然而,它也通过其 E3 连接酶活性介导的胰岛素受体(IR)和胰岛素受体底物 1(IRS1)的泛素化依赖性降解以及作为肌肉因子的变构阻断 IR 来损害胰岛素信号。在这里,我们试图通过将其有害的代谢作用与有益的作用分开,将 MG53 开发成一种心脏保护疗法。
使用免疫沉淀-质谱、定点突变、体外激酶测定和体内动物研究,我们研究了 MG53 丝氨酸 255(S255)磷酸化的作用。特别是,我们利用重组蛋白和基因敲入方法,评估了 MG53-S255A 突变体在治疗糖尿病小鼠心肌缺血/再灌注损伤中的潜在治疗效果。
我们发现 S255 磷酸化是 MG53 E3 连接酶活性的必要条件。此外,MG53 的磷酸化由 GSK3β(糖原合酶激酶 3β)介导,并在代谢紊乱的动物模型中显著升高。因此,IR-IRS1-GSK3β-MG53 在代谢紊乱的发病机制中形成了一个恶性循环,即异常的胰岛素信号导致 GSK3β 的过度激活,进而磷酸化 MG53 并增强其 E3 连接酶活性,进一步损害胰岛素敏感性。重要的是,S255A 突变消除了 E3 连接酶活性,同时保留了 MG53 的细胞保护功能。因此,S255A 突变体,而不是野生型 MG53,在糖尿病小鼠中保护心脏免受缺血/再灌注损伤,尽管两者在正常小鼠中都引起心脏保护作用。此外,在 S255A 敲入小鼠中,S255A 突变体也减轻了糖尿病状态下缺血/再灌注引起的心肌损伤。
S255 磷酸化是 MG53 E3 连接酶活性的一种偏向性调节。MG53-S255A 突变体为急性心肌损伤的治疗提供了一种有前途的方法,特别是在代谢紊乱的患者中。