Suppr超能文献

射血分数保留的心力衰竭:计算未来心力衰竭事件和死亡的风险。

Heart failure with preserved ejection fraction: Calculating the risk of future heart failure events and death.

作者信息

Schrutka Lore, Seirer Benjamin, Rettl René, Dachs Theresa-Marie, Binder Christina, Duca Franz, Dalos Daniel, Badr-Eslam Roza, Kastner Johannes, Hengstenberg Christian, Frommlet Florian, Bonderman Diana

机构信息

Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.

Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Medical Statistics, Medical University of Vienna, Vienna, Austria.

出版信息

Front Cardiovasc Med. 2022 Oct 21;9:921132. doi: 10.3389/fcvm.2022.921132. eCollection 2022.

Abstract

OBJECTIVE

We sought to develop a clinical model to identify heart failure patients with preserved ejection fraction (HFpEF) at highest risk for acute HF events or death.

METHODS AND RESULTS

Between 2010 and 2019, 422 patients with HFpEF were followed. Acute HF events occurred in 190 patients (45%), including 110 (58%) with recurrent hospitalizations. Those with recurrent events had worse 6-min walk test ( < 0.001), higher brain N-terminal prohormone natriuretic peptide (NT-proBNP, < 0.001), and higher New York Heart Association functional class (NYHA, < 0.001). Overall survival rates in patients with 1 HF event vs > 1 HF events were: at 1-year 91.6 vs. 91.8%, at 3-years 84.7 vs. 68.3% and at 5-years 67.4 vs. 42.7%, respectively ( < 0.04). The Hfpef survivAL hOspitalization (HALO) score revealed best predictive capability for all-cause mortality combining the variables age ( = 0.08), BMI ( = 0.124), NYHA class ( = 0.004), need for diuretic therapy ( = 0.06), left atrial volume index ( = 0.048), systolic pulmonary artery pressure ( = 0.013), NT-proBNP ( = 0.076), and number of prior hospitalizations ( = 0.006). HALO score predicted future HF hospitalizations in an ordinal logistic regression model (OR 3.24, 95% CI: 2.45-4.37, < 0.001). The score performance was externally validated in 75 HFpEF patients, confirming a strong survival prediction (HR 2.13, 95% CI: 1.30-3.47, = 0.002).

CONCLUSIONS

We developed a model to identify HFpEF patients at increased risk of death and HF hospitalization. NYHA class and recurrent HF hospitalizations were the strongest drivers of outcome.

摘要

目的

我们试图开发一种临床模型,以识别射血分数保留的心力衰竭(HFpEF)患者中急性心力衰竭事件或死亡风险最高的患者。

方法与结果

2010年至2019年期间,对422例HFpEF患者进行了随访。190例患者(45%)发生了急性心力衰竭事件,其中110例(58%)再次住院。再次发生事件的患者6分钟步行试验结果更差(<0.001),脑利钠肽前体N末端(NT-proBNP)水平更高(<0.001),纽约心脏协会心功能分级(NYHA)更高(<0.001)。发生1次心力衰竭事件与>1次心力衰竭事件的患者的总生存率分别为:1年时91.6%对91.8%,3年时84.7%对68.3%,5年时67.4%对42.7%(<0.04)。心力衰竭射血分数保留生存住院(HALO)评分结合年龄(=0.08)、体重指数(BMI,=0.124)、NYHA分级(=0.004)、利尿剂治疗需求(=0.06)、左心房容积指数(=0.048)、收缩期肺动脉压(=0.013)、NT-proBNP(=0.076)和既往住院次数(=0.006)等变量,对全因死亡率显示出最佳预测能力。HALO评分在有序逻辑回归模型中预测未来心力衰竭住院情况(比值比3.24,95%置信区间:2.45-4.37,<0.001)。该评分性能在75例HFpEF患者中得到外部验证,证实了其强大的生存预测能力(风险比2.13,95%置信区间:1.30-3.47,=0.002)。

结论

我们开发了一种模型,以识别死亡和心力衰竭住院风险增加的HFpEF患者。NYHA分级和反复心力衰竭住院是预后的最强驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ba3/9634582/4bfd94c4bb40/fcvm-09-921132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验