Suppr超能文献

用于多层传输问题的混合蒙特卡罗估计器。

Hybrid Monte Carlo estimators for multilayer transport problems.

作者信息

Zhao Shuang, Spanier Jerome

机构信息

Computer Science Department, University of California, Irvine, United States of America.

Beckman Laser Institute, University of California, Irvine, United States of America.

出版信息

J Comput Phys. 2021 Apr 15;431. doi: 10.1016/j.jcp.2021.110117. Epub 2021 Jan 13.

Abstract

This paper introduces a new family of hybrid estimators aimed at controlling the efficiency of Monte Carlo computations in particle transport problems. In this context, efficiency is usually measured by the figure of merit (FOM) given by the inverse product of the estimator variance Var[ξ] and the run time : FOM := (Var[ξ] ). Previously, we developed a new family of transport-constrained unbiased radiance estimators (T-CURE) that generalize the conventional collision and track length estimators [1] and provide 1-2 orders of magnitude additional variance reduction. However, these gains in variance reduction are partly offset by increases in overhead time [2], lowering their computational efficiency. Here we show that combining T-CURE estimation with conventional terminal estimation each individual biography can moderate the efficiency of the resulting "hybrid" estimator without introducing bias in the computation. This is achieved by treating only the refractive interface crossings with the extended next event estimator, and all others by standard terminal estimators. This is because when there are index-mismatched interfaces between the collision location and the detector, the T-CURE computation rapidly becomes intractable due to the large number of refractions and reflections that can arise. We illustrate the gains in efficiency by comparing our hybrid strategy with more conventional estimation methods in a series of multi-layer numerical examples.

摘要

本文介绍了一种新型的混合估计器族,旨在控制粒子输运问题中蒙特卡罗计算的效率。在这种情况下,效率通常由品质因数(FOM)来衡量,品质因数由估计器方差Var[ξ]与运行时间的乘积的倒数给出:FOM := (Var[ξ] )。此前,我们开发了一种新型的输运约束无偏辐射估计器(T-CURE),它推广了传统的碰撞和径迹长度估计器[1],并提供了1至2个数量级的额外方差降低。然而,这些方差降低的成果部分被额外时间的增加所抵消[2],从而降低了它们的计算效率。在这里,我们表明,将T-CURE估计与传统的终端估计相结合,每个单独的历程都可以调节所得“混合”估计器的效率,而不会在计算中引入偏差。这是通过仅使用扩展的下一个事件估计器处理折射界面交叉,而其他所有情况则使用标准终端估计器来实现的。这是因为当碰撞位置与探测器之间存在折射率不匹配的界面时,由于可能出现大量的折射和反射,T-CURE计算很快变得难以处理。我们通过在一系列多层数值示例中将我们的混合策略与更传统的估计方法进行比较,来说明效率的提高。

相似文献

1
Hybrid Monte Carlo estimators for multilayer transport problems.用于多层传输问题的混合蒙特卡罗估计器。
J Comput Phys. 2021 Apr 15;431. doi: 10.1016/j.jcp.2021.110117. Epub 2021 Jan 13.
3
Expected-value techniques for Monte Carlo modeling of well logging problems.用于测井问题蒙特卡罗建模的期望值技术。
Nucl Instrum Methods Phys Res A. 2010 Feb 1;613(2):334-341. doi: 10.1016/j.nima.2009.11.067. Epub 2009 Dec 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验