Hayakawa Carole K, Spanier Jerome, Venugopalan Vasan
J Opt Soc Am A Opt Image Sci Vis. 2014 Feb 1;31(2):301-11. doi: 10.1364/JOSAA.31.000301.
We examine the relative error of Monte Carlo simulations of radiative transport that employ two commonly used estimators that account for absorption differently, either discretely, at interaction points, or continuously, between interaction points. We provide a rigorous derivation of these discrete and continuous absorption weighting estimators within a stochastic model that we show to be equivalent to an analytic model, based on the radiative transport equation (RTE). We establish that both absorption weighting estimators are unbiased and, therefore, converge to the solution of the RTE. An analysis of spatially resolved reflectance predictions provided by these two estimators reveals no advantage to either in cases of highly scattering and highly anisotropic media. However, for moderate to highly absorbing media or isotropically scattering media, the discrete estimator provides smaller errors at proximal source locations while the continuous estimator provides smaller errors at distal locations. The origin of these differing variance characteristics can be understood through examination of the distribution of exiting photon weights.
我们研究了辐射传输蒙特卡罗模拟的相对误差,该模拟采用了两种常用的估计器,它们对吸收的处理方式不同,一种是在相互作用点离散处理,另一种是在相互作用点之间连续处理。我们在一个随机模型中对这些离散和连续吸收加权估计器进行了严格推导,结果表明该随机模型等同于基于辐射传输方程(RTE)的解析模型。我们证明了这两种吸收加权估计器都是无偏的,因此会收敛到RTE的解。对这两种估计器提供的空间分辨反射率预测进行分析后发现,在高散射和高各向异性介质的情况下,两者都没有优势。然而,对于中度至高吸收介质或各向同性散射介质,离散估计器在近端源位置提供较小的误差,而连续估计器在远端位置提供较小的误差。通过检查出射光子权重的分布,可以理解这些不同方差特性的起源。