Suppr超能文献

作为治疗新型冠状病毒感染潜在药物先导物的受体结合域(RBD)和主要蛋白酶(Mpro)双靶向环肽

Dual-targeting cyclic peptides of receptor-binding domain (RBD) and main protease (Mpro) as potential drug leads for the treatment of SARS-CoV-2 infection.

作者信息

Xu Zhen, Zou Yunting, Gao Xi, Niu Miao-Miao, Li Jindong, Xue Lu, Jiang Su

机构信息

Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.

Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.

出版信息

Front Pharmacol. 2022 Oct 19;13:1041331. doi: 10.3389/fphar.2022.1041331. eCollection 2022.

Abstract

The receptor-binding domain (RBD) and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) play a crucial role in the entry and replication of viral particles, and co-targeting both of them could be an attractive approach for the treatment of SARS-CoV-2 infection by setting up a "double lock" in the viral lifecycle. However, few dual RBD/Mpro-targeting agents have been reported. Here, four novel RBD/Mpro dual-targeting peptides, termed as MRs 1-4, were discovered by an integrated virtual screening scheme combining molecular docking-based screening and molecular dynamics simulation. All of them possessed nanomolar binding affinities to both RBD and Mpro ranging from 14.4 to 39.2 nM and 22.5-40.4 nM, respectively. Further pseudovirus infection assay revealed that the four selected peptides showed >50% inhibition against SARS-CoV-2 pseudovirus at a concentration of 5 µM without significant cytotoxicity to host cells. This study leads to the identification of a class of dual RBD/Mpro-targeting agents, which may be developed as potential and effective SARS-CoV-2 therapeutics.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的受体结合域(RBD)和主要蛋白酶(Mpro)在病毒颗粒的进入和复制中起着关键作用,通过在病毒生命周期中设置“双锁”,共同靶向这两者可能是治疗SARS-CoV-2感染的一种有吸引力的方法。然而,很少有报道双RBD/Mpro靶向剂。在此,通过结合基于分子对接的筛选和分子动力学模拟的综合虚拟筛选方案,发现了四种新型的RBD/Mpro双靶向肽,称为MRs 1-4。它们对RBD和Mpro的结合亲和力均为纳摩尔级,分别为14.4至39.2 nM和22.5至40.4 nM。进一步的假病毒感染试验表明,四种选定的肽在5 μM浓度下对SARS-CoV-2假病毒的抑制率>50%,且对宿主细胞无明显细胞毒性。本研究鉴定出一类双RBD/Mpro靶向剂,可开发为潜在有效的SARS-CoV-2治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2482/9627161/67e08b1c388d/fphar-13-1041331-g001.jpg

相似文献

7
investigation of spice molecules as potent inhibitor of SARS-CoV-2.
J Biomol Struct Dyn. 2022 Feb;40(2):860-874. doi: 10.1080/07391102.2020.1819879. Epub 2020 Sep 17.
9
Isatin-based virtual high throughput screening, molecular docking, DFT, QM/MM, MD and MM-PBSA study of novel inhibitors of SARS-CoV-2 main protease.
J Biomol Struct Dyn. 2022 Oct;40(17):7852-7867. doi: 10.1080/07391102.2021.1904003. Epub 2021 Mar 25.

引用本文的文献

本文引用的文献

1
Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery.
Nat Rev Chem. 2020 Feb;4(2):90-101. doi: 10.1038/s41570-019-0159-2. Epub 2020 Jan 17.
2
Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development.
Front Pharmacol. 2022 Aug 9;13:955648. doi: 10.3389/fphar.2022.955648. eCollection 2022.
3
Docking-Based Virtual Screening Enables Prioritizing Protein Kinase Inhibitors With Phenotypic Activity Against Schistosoma mansoni.
Front Cell Infect Microbiol. 2022 Jul 5;12:913301. doi: 10.3389/fcimb.2022.913301. eCollection 2022.
4
Therapeutic Approaches to the Neurologic Manifestations of COVID-19.
Neurotherapeutics. 2022 Sep;19(5):1435-1466. doi: 10.1007/s13311-022-01267-y. Epub 2022 Jul 21.
5
Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum.
Cell. 2022 Jul 7;185(14):2422-2433.e13. doi: 10.1016/j.cell.2022.06.005. Epub 2022 Jun 9.
6
What Omicron's BA.4 and BA.5 variants mean for the pandemic.
Nature. 2022 Jun;606(7916):848-849. doi: 10.1038/d41586-022-01730-y.
7
BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.
Nature. 2022 Aug;608(7923):593-602. doi: 10.1038/s41586-022-04980-y. Epub 2022 Jun 17.
8
Omicron - The new SARS-CoV-2 challenge?
Rev Med Virol. 2022 Jul;32(4):e2358. doi: 10.1002/rmv.2358. Epub 2022 Apr 21.
9
Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2.
Int J Mol Sci. 2022 Apr 6;23(7):4050. doi: 10.3390/ijms23074050.
10
Non-covalent SARS-CoV-2 M inhibitors developed from in silico screen hits.
Sci Rep. 2022 Feb 15;12(1):2505. doi: 10.1038/s41598-022-06306-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验