Suppr超能文献

使用基于树的预测模型识别依从性干预的目标群体和个体。

Identification of target groups and individuals for adherence interventions using tree-based prediction models.

作者信息

Wendl Johannes, Simon Andreas, Kistler Martin, Hapfelmeier Jana, Schneider Antonius, Hapfelmeier Alexander

机构信息

Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany.

Vilua Healthcare GmbH, Berlin, Germany.

出版信息

Front Pharmacol. 2022 Oct 19;13:1001038. doi: 10.3389/fphar.2022.1001038. eCollection 2022.

Abstract

In chronically ill patients, medication adherence during implementation can be crucial for treatment success and can decrease health costs. In some populations, regression models do not show this relationship. We aim to estimate subgroup-specific and personalized effects to identify target groups for interventions. We defined three cohorts of patients with type 1 diabetes (n = 12,713), type 2 diabetes (n = 85,162) and hyperlipidemia (n = 117,485) from German claims data between 2012 and 2015. We estimated the association of adherence during implementation in the first year (proportion of days covered) and mean total costs in the three following years, controlled for sex, age, Charlson's Comorbidity Index, initial total costs, severity of the disease and surrogates for health behavior. We fitted three different types of models on training data: 1) linear regression models for the overall conditional associations between adherence and costs, 2) model-based trees to identify subgroups of patients with heterogeneous adherence effects, and 3) model-based random forests to estimate personalized adherence effects. To assess the performance of the latter, we conditionally re-estimated the personalized effects using test data, the fixed structure of the forests, and fixed effect estimates of the remaining covariates. 1) our simple linear regression model estimated a positive adherence effect, that is an increase in total costs of 10.73 Euro per PDC-point and year for diabetes type 1, 3.92 Euro for diabetes type 2 and 1.92 Euro for hyperlipidemia (all ≤ 0.001). 2) The model-based tree detected subgroups with negative estimated adherence effects for diabetes type 2 (-1.69 Euro, 24.4% of cohort) and hyperlipidemia (-0.11 Euro, 36.1% and -5.50 Euro, 5.3%). 3) Our model-based random forest estimated personalized adherence effects with a significant proportion (4.2%-24.1%) of negative effects (up to -8.31 Euro). The precision of these estimates was high for diabetes type 2 and hyperlipidemia patients. Our approach shows that tree-based models can identify patients with different adherence effects and the precision of personalized effects is measurable. Identified patients can form target groups for adherence-promotion interventions. The method can also be applied to other outcomes such as hospitalization risk to maximize positive health effects of an intervention.

摘要

在慢性病患者中,治疗实施过程中的药物依从性对于治疗成功至关重要,并且可以降低医疗成本。在某些人群中,回归模型并未显示出这种关系。我们旨在估计亚组特异性和个性化效应,以确定干预的目标群体。我们从2012年至2015年的德国理赔数据中定义了三组患者,分别为1型糖尿病患者(n = 12,713)、2型糖尿病患者(n = 85,162)和高脂血症患者(n = 117,485)。我们估计了第一年治疗实施期间的依从性(覆盖天数比例)与随后三年的平均总费用之间的关联,并对性别、年龄、查尔森合并症指数、初始总费用、疾病严重程度和健康行为替代指标进行了控制。我们在训练数据上拟合了三种不同类型的模型:1)用于依从性与费用之间总体条件关联的线性回归模型;2)基于模型的树,以识别依从性效应异质的患者亚组;3)基于模型的随机森林,以估计个性化依从性效应。为了评估后者的性能,我们使用测试数据、森林的固定结构以及其余协变量的固定效应估计值,有条件地重新估计了个性化效应。1)我们的简单线性回归模型估计出了正向的依从性效应,即1型糖尿病患者每PDC点和每年的总费用增加10.73欧元,2型糖尿病患者为3.92欧元,高脂血症患者为1.92欧元(均≤0.001)。2)基于模型树检测到2型糖尿病(-1.69欧元,占队列的24.4%)和高脂血症(-0.11欧元,占36.1%和-5.50欧元,占5.3%)存在估计依从性效应为负的亚组。3)我们基于模型的随机森林估计出个性化依从性效应,其中有相当比例(4.2%-24.1%)为负效应(高达-8.31欧元)。对于2型糖尿病和高脂血症患者,这些估计的精度很高。我们的方法表明,基于树的模型可以识别出具有不同依从性效应的患者,并且个性化效应的精度是可测量的。识别出的患者可以构成促进依从性干预的目标群体。该方法也可应用于其他结局,如住院风险,以最大化干预对健康的积极影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/364b/9627286/d9a3b5e86eee/fphar-13-1001038-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验