Suppr超能文献

用于预测新冠肺炎患者感染水平和死亡率的同质集成模型:来自中国的证据。

Homogeneous ensemble models for predicting infection levels and mortality of COVID-19 patients: Evidence from China.

作者信息

Wang Jiafeng, Zhou Xianlong, Hou Zhitian, Xu Xiaoya, Zhao Yueyue, Chen Shanshan, Zhang Jun, Shao Lina, Yan Rong, Wang Mingshan, Ge Minghua, Hao Tianyong, Tu Yuexing, Huang Haijun

机构信息

Department of Head, Neck and Thyroid Surgery, Zhejiang Provincial People's Hospital and People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China.

Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.

出版信息

Digit Health. 2022 Nov 1;8:20552076221133692. doi: 10.1177/20552076221133692. eCollection 2022 Jan-Dec.

Abstract

BACKGROUND

Persistence of long-term COVID-19 pandemic is putting high pressure on healthcare services worldwide for several years. This article aims to establish models to predict infection levels and mortality of COVID-19 patients in China.

METHODS

Machine learning models and deep learning models have been built based on the clinical features of COVID-19 patients. The best models are selected by area under the receiver operating characteristic curve (AUC) scores to construct two homogeneous ensemble models for predicting infection levels and mortality, respectively. The first-hand clinical data of 760 patients are collected from Zhongnan Hospital of Wuhan University between 3 January and 8 March 2020. We preprocess data with cleaning, imputation, and normalization.

RESULTS

Our models obtain AUC = 0.7059 and Recall (Weighted avg) = 0.7248 in predicting infection level, while AUC=0.8436 and Recall (Weighted avg) = 0.8486 in predicting mortality ratio. This study also identifies two sets of essential clinical features. One is C-reactive protein (CRP) or high sensitivity C-reactive protein (hs-CRP) and the other is chest tightness, age, and pleural effusion.

CONCLUSIONS

Two homogeneous ensemble models are proposed to predict infection levels and mortality of COVID-19 patients in China. New findings of clinical features for benefiting the machine learning models are reported. The evaluation of an actual dataset collected from January 3 to March 8, 2020 demonstrates the effectiveness of the models by comparing them with state-of-the-art models in prediction.

摘要

背景

长期的新冠疫情持续数年给全球医疗服务带来了巨大压力。本文旨在建立模型来预测中国新冠患者的感染水平和死亡率。

方法

基于新冠患者的临床特征构建了机器学习模型和深度学习模型。通过接收者操作特征曲线(AUC)得分选取最佳模型,分别构建两个同质性集成模型来预测感染水平和死亡率。2020年1月3日至3月8日期间从武汉大学中南医院收集了760例患者的第一手临床数据。我们对数据进行清洗、插补和归一化预处理。

结果

我们的模型在预测感染水平时AUC = 0.7059,召回率(加权平均值)= 0.7248;在预测死亡率时AUC = 0.8436,召回率(加权平均值)= 0.8486。本研究还确定了两组重要的临床特征。一组是C反应蛋白(CRP)或高敏C反应蛋白(hs-CRP),另一组是胸闷、年龄和胸腔积液。

结论

提出了两个同质性集成模型来预测中国新冠患者的感染水平和死亡率。报告了有助于机器学习模型的临床特征新发现。通过将2020年1月3日至3月8日收集的实际数据集与预测方面的最先进模型进行比较,证明了这些模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e466/9630904/ec6cfc4583a9/10.1177_20552076221133692-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验