Suppr超能文献

基于机器学习的中国广西马尔尼菲青霉菌感染 HIV/AIDS 患者院内死亡率预测。

Machine learning-based in-hospital mortality prediction of HIV/AIDS patients with Talaromyces marneffei infection in Guangxi, China.

机构信息

Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Fourth People's Hospital of Nanning, Nanning, Guangxi, China.

出版信息

PLoS Negl Trop Dis. 2022 May 4;16(5):e0010388. doi: 10.1371/journal.pntd.0010388. eCollection 2022 May.

Abstract

OBJECTIVE

Talaromycosis is a serious regional disease endemic in Southeast Asia. In China, Talaromyces marneffei (T. marneffei) infections is mainly concentrated in the southern region, especially in Guangxi, and cause considerable in-hospital mortality in HIV-infected individuals. Currently, the factors that influence in-hospital death of HIV/AIDS patients with T. marneffei infection are not completely clear. Existing machine learning techniques can be used to develop a predictive model to identify relevant prognostic factors to predict death and appears to be essential to reducing in-hospital mortality.

METHODS

We prospectively enrolled HIV/AIDS patients with talaromycosis in the Fourth People's Hospital of Nanning, Guangxi, from January 2012 to June 2019. Clinical features were selected and used to train four different machine learning models (logistic regression, XGBoost, KNN, and SVM) to predict the treatment outcome of hospitalized patients, and 30% internal validation was used to evaluate the performance of models. Machine learning model performance was assessed according to a range of learning metrics, including area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP) tool was used to explain the model.

RESULTS

A total of 1927 HIV/AIDS patients with T. marneffei infection were included. The average in-hospital mortality rate was 13.3% (256/1927) from 2012 to 2019. The most common complications/coinfections were pneumonia (68.9%), followed by oral candida (47.5%), and tuberculosis (40.6%). Deceased patients showed higher CD4/CD8 ratios, aspartate aminotransferase (AST) levels, creatinine levels, urea levels, uric acid (UA) levels, lactate dehydrogenase (LDH) levels, total bilirubin levels, creatine kinase levels, white blood-cell counts (WBC) counts, neutrophil counts, procaicltonin levels and C-reactive protein (CRP) levels and lower CD3+ T-cell count, CD8+ T-cell count, and lymphocyte counts, platelet (PLT), high-density lipoprotein cholesterol (HDL), hemoglobin (Hb) levels than those of surviving patients. The predictive XGBoost model exhibited 0.71 sensitivity, 0.99 specificity, and 0.97 AUC in the training dataset, and our outcome prediction model provided robust discrimination in the testing dataset, showing an AUC of 0.90 with 0.69 sensitivity and 0.96 specificity. The other three models were ruled out due to poor performance. Septic shock and respiratory failure were the most important predictive features, followed by uric acid, urea, platelets, and the AST/ALT ratios.

CONCLUSION

The XGBoost machine learning model is a good predictor in the hospitalization outcome of HIV/AIDS patients with T. marneffei infection. The model may have potential application in mortality prediction and high-risk factor identification in the talaromycosis population.

摘要

目的

马尔尼菲青霉病(Talaromycosis)是东南亚地区一种严重的地方性疾病。在中国,马尔尼菲青霉菌(T. marneffei)感染主要集中在南方地区,尤其是广西,导致 HIV 感染者的院内死亡率相当高。目前,影响 HIV/AIDS 患者马尔尼菲青霉病感染院内死亡的因素尚不完全清楚。现有的机器学习技术可用于开发预测模型,以识别相关预后因素,预测死亡,这似乎对降低院内死亡率至关重要。

方法

我们前瞻性纳入了 2012 年 1 月至 2019 年 6 月期间在广西南宁市第四人民医院就诊的 HIV/AIDS 合并马尔尼菲青霉病患者。选择临床特征并用于训练四个不同的机器学习模型(逻辑回归、XGBoost、KNN 和 SVM),以预测住院患者的治疗结局,并使用 30%的内部验证来评估模型的性能。根据一系列学习指标,包括接受者操作特征曲线(ROC)下的面积(AUC),评估机器学习模型的性能。使用 Shapley 加法解释(SHAP)工具来解释模型。

结果

共纳入 1927 例 HIV/AIDS 合并马尔尼菲青霉病感染患者。2012 年至 2019 年的平均院内死亡率为 13.3%(256/1927)。最常见的并发症/合并症是肺炎(68.9%),其次是口腔念珠菌病(47.5%)和结核病(40.6%)。死亡患者的 CD4/CD8 比值、天门冬氨酸氨基转移酶(AST)水平、肌酐水平、尿素水平、尿酸(UA)水平、乳酸脱氢酶(LDH)水平、总胆红素水平、肌酸激酶水平、白细胞计数(WBC)计数、中性粒细胞计数、降钙素原水平和 C 反应蛋白(CRP)水平较高,而 CD3+T 细胞计数、CD8+T 细胞计数和淋巴细胞计数、血小板(PLT)、高密度脂蛋白胆固醇(HDL)、血红蛋白(Hb)水平较低。预测性 XGBoost 模型在训练数据集中的灵敏度为 0.71,特异性为 0.99,AUC 为 0.97,在测试数据集中,我们的结局预测模型具有良好的区分度,AUC 为 0.90,灵敏度为 0.69,特异性为 0.96。其他三个模型由于性能不佳而被排除。败血症和呼吸衰竭是最重要的预测特征,其次是尿酸、尿素、血小板和 AST/ALT 比值。

结论

XGBoost 机器学习模型是 HIV/AIDS 合并马尔尼菲青霉病患者住院结局的良好预测模型。该模型可能具有在马尔尼菲青霉病人群中预测死亡率和识别高危因素的潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff11/9067679/7fcc2b04b3e5/pntd.0010388.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验