Malechka Volha V, Duong Dat, Bordonada Keyla D, Turriff Amy, Blain Delphine, Murphy Elizabeth, Introne Wendy J, Gochuico Bernadette R, Adams David R, Zein Wadih M, Brooks Brian P, Huryn Laryssa A, Solomon Benjamin D, Hufnagel Robert B
Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
Medical Genomics Unit, Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland.
Ophthalmol Sci. 2022 Sep 24;3(1):100225. doi: 10.1016/j.xops.2022.100225. eCollection 2023 Mar.
To describe the relationships between foveal structure and visual function in a cohort of individuals with foveal hypoplasia (FH) and to estimate FH grade and visual acuity using a deep learning classifier.
Retrospective cohort study and experimental study.
A total of 201 patients with FH were evaluated at the National Eye Institute from 2004 to 2018.
Structural components of foveal OCT scans and corresponding clinical data were analyzed to assess their contributions to visual acuity. To automate FH scoring and visual acuity correlations, we evaluated the following 3 inputs for training a neural network predictor: (1) OCT scans, (2) OCT scans and metadata, and (3) real OCT scans and fake OCT scans created from a generative adversarial network.
The relationships between visual acuity outcomes and determinants, such as foveal morphology, nystagmus, and refractive error.
The mean subject age was 24.4 years (range, 1-73 years; standard deviation = 18.25 years) at the time of OCT imaging. The mean best-corrected visual acuity (n = 398 eyes) was equivalent to a logarithm of the minimal angle of resolution (LogMAR) value of 0.75 (Snellen 20/115). Spherical equivalent refractive error (SER) ranged from -20.25 diopters (D) to +13.63 D with a median of +0.50 D. The presence of nystagmus and a high-LogMAR value showed a statistically significant relationship ( < 0.0001). The participants whose SER values were farther from plano demonstrated higher LogMAR values (n = 382 eyes). The proportion of patients with nystagmus increased with a higher FH grade. Variability in SER with grade 4 (range, -20.25 D to +13.00 D) compared with grade 1 (range, -8.88 D to +8.50 D) was statistically significant ( < 0.0001). Our neural network predictors reliably estimated the FH grading and visual acuity (correlation to true value > 0.85 and > 0.70, respectively) for a test cohort of 37 individuals (98 OCT scans). Training the predictor on real OCT scans with metadata and fake OCT scans improved the accuracy over the model trained on real OCT scans alone.
Nystagmus and foveal anatomy impact visual outcomes in patients with FH, and computational algorithms reliably estimate FH grading and visual acuity.
描述一组中心凹发育不全(FH)患者的中心凹结构与视觉功能之间的关系,并使用深度学习分类器估计FH分级和视力。
回顾性队列研究和实验研究。
2004年至2018年期间,共有201例FH患者在美国国立眼科研究所接受评估。
分析中心凹OCT扫描的结构成分和相应的临床数据,以评估它们对视力的影响。为了实现FH评分和视力相关性的自动化,我们评估了以下3种输入来训练神经网络预测器:(1)OCT扫描,(2)OCT扫描和元数据,以及(3)由生成对抗网络创建的真实OCT扫描和伪造OCT扫描。
视力结果与决定因素之间的关系,如中心凹形态、眼球震颤和屈光不正。
在进行OCT成像时,受试者的平均年龄为24.4岁(范围1 - 73岁;标准差 = 18.25岁)。平均最佳矫正视力(n = 398只眼)相当于最小分辨角对数(LogMAR)值为0.75(Snellen 20/115)。等效球镜屈光不正(SER)范围为-20.25屈光度(D)至+13.63 D,中位数为+0.50 D。眼球震颤的存在与高LogMAR值显示出统计学上的显著关系(<0.0001)。SER值离平光越远的参与者,LogMAR值越高(n = 382只眼)。眼球震颤患者的比例随着FH分级的升高而增加。4级(范围-20.25 D至+13.00 D)与1级(范围-8.88 D至+8.5 D)相比,SER的变异性具有统计学意义(<0.0001)。我们的神经网络预测器能够可靠地估计37名个体(98次OCT扫描)的测试队列的FH分级和视力(与真实值的相关性分别>0.85和>0.70)。在带有元数据的真实OCT扫描和伪造OCT扫描上训练预测器,比仅在真实OCT扫描上训练的模型提高了准确性。
眼球震颤和中心凹解剖结构影响FH患者的视觉结果,并且计算算法能够可靠地估计FH分级和视力。