Suppr超能文献

利用真实世界数据进行药物重新利用。

Drug repurposing using real-world data.

作者信息

Tan George S Q, Sloan Erica K, Lambert Pete, Kirkpatrick Carl M J, Ilomäki Jenni

机构信息

Centre for Medicine Use and Safety, Monash University, Parkville, Victoria, Australia.

Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

出版信息

Drug Discov Today. 2023 Jan;28(1):103422. doi: 10.1016/j.drudis.2022.103422. Epub 2022 Oct 28.

Abstract

The use of real-world data in drug repurposing has emerged due to well-established advantages of drug repurposing in supplementing de novo drug discovery and incentives in incorporating real-world evidence in regulatory approvals. We conducted a scoping review to characterize repurposing studies using real-world data and discuss their potential challenges and solutions. A total of 250 studies met the inclusion criteria, of which 36 were original studies on hypothesis generation, 101 on hypothesis validation, and seven on safety assessment. Key challenges that should be addressed for future progress in using real-world data for repurposing include isolated data sources with poor clinical granularity, false-positive signals from data mining, the sensitivity of hypothesis validation to bias and confounding, and the lack of clear regulatory guidance.

摘要

由于药物重新利用在补充全新药物研发方面具有公认的优势,以及在监管审批中纳入真实世界证据的激励措施,因此在药物重新利用中使用真实世界数据的情况应运而生。我们进行了一项范围审查,以描述使用真实世界数据的重新利用研究,并讨论其潜在挑战和解决方案。共有250项研究符合纳入标准,其中36项是关于假设生成的原创研究,101项是关于假设验证的研究,7项是关于安全性评估的研究。为了在使用真实世界数据进行重新利用方面取得未来进展而应解决的关键挑战包括临床粒度较差的孤立数据源、数据挖掘产生的假阳性信号、假设验证对偏差和混杂因素的敏感性,以及缺乏明确的监管指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验