Rahman Md Okibur, Das Asim, Naeem Nazratun, Hossain Md Ali, Alam Md Nur, Azad Akm, Alyami Salem A, Alotaibi Naif, Al-Moisheer A S, Moni Mohammod Ali
Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
Department of Computer Science & Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
Biology (Basel). 2024 Nov 24;13(12):966. doi: 10.3390/biology13120966.
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally, significantly affecting liver functions, thus necessitating the identification of biomarkers and effective therapeutics to improve HCC-based disabilities. This study aimed to identify prognostic biomarkers, signaling cascades, and candidate drugs for the treatment of HCC through integrated bioinformatics approaches such as functional enrichment analysis, survival analysis, molecular docking, and simulation. Differential expression and functional enrichment analyses revealed 176 common differentially expressed genes from two microarray datasets, GSE29721 and GSE49515, significantly involved in HCC development and progression. Topological analyses revealed 12 hub genes exhibiting elevated expression in patients with higher tumor stages and grades. Survival analyses indicated that 11 hub genes (CCNB1, AURKA, RACGAP1, CEP55, SMC4, RRM2, PRC1, CKAP2, SMC2, UHRF1, and FANCI) and three transcription factors (E2F1, CREB1, and NFYA) are strongly linked to poor patient survival. Finally, molecular docking and simulation identified seven candidate drugs with stable complexes to their target proteins: tozasertib (-9.8 kcal/mol), tamatinib (-9.6 kcal/mol), ilorasertib (-9.5 kcal/mol), hesperidin (-9.5 kcal/mol), PF-562271 (-9.3 kcal/mol), coumestrol (-8.4 kcal/mol), and clofarabine (-7.7 kcal/mol). These findings suggest that the identified hub genes and TFs could serve as valuable prognostic biomarkers and therapeutic targets for HCC-based disabilities.
肝细胞癌(HCC)是全球最常见的恶性肿瘤之一,严重影响肝功能,因此需要识别生物标志物和有效的治疗方法来改善基于HCC的残疾状况。本研究旨在通过功能富集分析、生存分析、分子对接和模拟等综合生物信息学方法,识别用于治疗HCC的预后生物标志物、信号级联和候选药物。差异表达和功能富集分析揭示了来自两个微阵列数据集GSE29721和GSE49515的176个常见差异表达基因,这些基因显著参与HCC的发生和发展。拓扑分析揭示了12个在肿瘤分期和分级较高的患者中表达升高的枢纽基因。生存分析表明,11个枢纽基因(CCNB1、AURKA、RACGAP1、CEP55、SMC4、RRM2、PRC1、CKAP2、SMC2、UHRF1和FANCI)和三个转录因子(E2F1、CREB1和NFYA)与患者的不良生存密切相关。最后,分子对接和模拟确定了七种与靶蛋白形成稳定复合物的候选药物:托扎替尼(-9.8千卡/摩尔)、他马替尼(-9.6千卡/摩尔)、伊洛替尼(-9.5千卡/摩尔)、橙皮苷(-9.5千卡/摩尔)、PF-562271(-9.3千卡/摩尔)、香豆雌酚(-8.4千卡/摩尔)和氯法拉滨(-7.7千卡/摩尔)。这些发现表明,所识别的枢纽基因和转录因子可作为基于HCC的残疾状况的有价值的预后生物标志物和治疗靶点。