Suppr超能文献

热激蛋白通过精细调控棉花中乙烯/生长素信号通路来调节热胁迫。

HEAT-RESPONSIVE PROTEIN regulates heat stress via fine-tuning ethylene/auxin signaling pathways in cotton.

机构信息

Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.

Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan.

出版信息

Plant Physiol. 2023 Jan 2;191(1):772-788. doi: 10.1093/plphys/kiac511.

Abstract

Plants sense and respond to fluctuating temperature and light conditions during the circadian cycle; however, the molecular mechanism underlying plant adaptability during daytime warm conditions remains poorly understood. In this study, we reveal that the ectopic regulation of a HEAT RESPONSIVE PROTEIN (GhHRP) controls the adaptation and survival of cotton (Gossypium hirsutum) plants in response to warm conditions via modulating phytohormone signaling. Increased ambient temperature promptly enhanced the binding of the phytochrome interacting factor 4 (GhPIF4)/ethylene-insensitive 3 (GhEIN3) complex to the GhHRP promoter to increase its mRNA level. The ectopic expression of GhHRP promoted the temperature-dependent accumulation of GhPIF4 transcripts and hypocotyl elongation by triggering thermoresponsive growth-related genes. Notably, the upregulation of the GhHRP/GhPIF4 complex improved plant growth via modulating the abundance of Arabidopsis thaliana auxin biosynthetic gene YUCCA8 (AtYUC8)/1-aminocyclopropane-1-carboxylate synthase 8 (AtACS8) for fine-tuning the auxin/ethylene interplay, ultimately resulting in decreased ethylene biosynthesis. GhHRP thus protects chloroplasts from photo-oxidative bursts via repressing AtACS8 and AtACS7 and upregulating AtYUC8 and the heat shock transcription factors (HSFA2), heat shock proteins (HSP70 and HSP20). Strikingly, the Δhrp disruption mutant exhibited compromised production of HSP/YUC8 that resulted in an opposite phenotype with the loss of the ability to respond to warm conditions. Our results show that GhHRP is a heat-responsive signaling component that assists plants in confronting the dark phase and modulates auxin signaling to rescue growth under temperature fluctuations.

摘要

植物在昼夜节律过程中感知并响应不断变化的温度和光照条件;然而,在白天温暖条件下植物适应能力的分子机制仍知之甚少。在这项研究中,我们揭示了异位调控热激蛋白(GhHRP)通过调节植物激素信号来控制棉花(Gossypium hirsutum)植物对温暖条件的适应和存活。环境温度的升高会迅速增强光敏色素相互作用因子 4(GhPIF4)/乙烯不敏感 3(GhEIN3)复合物与 GhHRP 启动子的结合,从而增加其 mRNA 水平。GhHRP 的异位表达通过触发热响应生长相关基因,促进了温度依赖性 GhPIF4 转录本的积累和下胚轴伸长。值得注意的是,GhHRP/GhPIF4 复合物的上调通过调节拟南芥生长素生物合成基因 YUCCA8(AtYUC8)/1-氨基环丙烷-1-羧酸合酶 8(AtACS8)的丰度来改善植物生长,从而精细调控生长素/乙烯相互作用,最终导致乙烯生物合成减少。GhHRP 因此通过抑制 AtACS8 和 AtACS7 以及上调 AtYUC8 和热休克转录因子(HSFA2)、热休克蛋白(HSP70 和 HSP20)来保护叶绿体免受光氧化爆发的影响。引人注目的是,Δhrp 缺失突变体表现出 HSP/YUC8 产生能力受损,导致与丧失应对温暖条件能力相反的表型。我们的研究结果表明,GhHRP 是一种热响应信号成分,有助于植物应对暗相,并调节生长素信号以在温度波动下挽救生长。

相似文献

1
3
EIN3-Mediated Ethylene Signaling Attenuates Auxin Response during Hypocotyl Thermomorphogenesis.
Plant Cell Physiol. 2021 Sep 24;62(4):708-720. doi: 10.1093/pcp/pcab028.
6
Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth.
Plant Physiol. 2020 Jul;183(3):1268-1280. doi: 10.1104/pp.20.00090. Epub 2020 May 19.
7
Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.
Plant Physiol. 2015 Aug;168(4):1777-91. doi: 10.1104/pp.15.00523. Epub 2015 Jun 24.
10
Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation.
Planta. 2012 Dec;236(6):1791-802. doi: 10.1007/s00425-012-1730-y. Epub 2012 Aug 14.

引用本文的文献

1
Protein networks: integrating pathways for plant heat stress adaptation.
Funct Integr Genomics. 2025 Sep 2;25(1):183. doi: 10.1007/s10142-025-01685-z.
2
Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies.
Front Genet. 2025 Mar 18;16:1553406. doi: 10.3389/fgene.2025.1553406. eCollection 2025.
4
GmBSK1-GmGSK1-GmBES1.5 regulatory module controls heat tolerance in soybean.
J Adv Res. 2025 Jul;73:187-198. doi: 10.1016/j.jare.2024.09.004. Epub 2024 Sep 3.
5
6
Unraveling the genetic and molecular basis of heat stress in cotton.
Front Genet. 2024 Jun 11;15:1296622. doi: 10.3389/fgene.2024.1296622. eCollection 2024.

本文引用的文献

2
3
Two interacting ethylene response factors regulate heat stress response.
Plant Cell. 2021 Apr 17;33(2):338-357. doi: 10.1093/plcell/koaa026.
4
SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in .
Development. 2020 Oct 8;147(19):dev189233. doi: 10.1242/dev.189233.
6
Cold-Induced CBF-PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis.
Mol Plant. 2020 Jun 1;13(6):894-906. doi: 10.1016/j.molp.2020.04.006. Epub 2020 Apr 18.
7
PHYTOCHROME-INTERACTING FACTORS at the interface of light and temperature signalling.
Physiol Plant. 2020 Jul;169(3):347-356. doi: 10.1111/ppl.13092. Epub 2020 Mar 31.
8
Thermal Reversion of Plant Phytochromes.
Mol Plant. 2020 Mar 2;13(3):386-397. doi: 10.1016/j.molp.2019.12.004. Epub 2019 Dec 6.
9
Genetic strategies for improving crop yields.
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验