Zubair Akmal, Zaib Sania, Ebaid Manal S
Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
Department of Biochemistry, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, Pakistan.
Funct Integr Genomics. 2025 Sep 2;25(1):183. doi: 10.1007/s10142-025-01685-z.
Plants' immobility renders them highly vulnerable to heat stress, which disrupts water relations, photosynthesis, respiration, and cellular homeostasis, ultimately reducing growth and yield. To survive, plants deploy a multifaceted heat stress response (HSR) that integrates calcium signaling, molecular chaperones, antioxidant enzymes, and phytohormonal networks. This review synthesizes recent advances in understanding the molecular crosstalk between phytohormones and protein synthesis during plant heat stress responses, with a particular focus on two key HSR modules: protein synthesis pathways, especially heat shock proteins (HSPs), and phytohormone signaling networks involving abscisic acid, cytokinins, ethylene, salicylic acid, and jasmonic acid. It also highlights the convergence of these pathways through calcium-dependent protein kinases (CDPKs) and reactive oxygen species (ROS) signaling. We present mechanistic insights into: (1) CDPK-mediated activation of heat shock transcription factors (HSFs) and hormone-responsive factors; (2) APX-driven ROS scavenging and its impact on crop thermotolerance; and (3) hormone-engineered strategies that enhance yield stability under high temperatures. By consolidating findings from recent meta-analyses and molecular studies, we identify critical nodes for biotechnological intervention, such as CDPK and APX overexpression, and propose field-oriented research priorities, including hormone-engineered crop trials and integrative breeding approaches. This forward-looking framework can help guide biotechnological interventions to enhance crop resilience and support the development of climate-smart crops aimed at safeguarding global food security in a warming world.
植物的固定性使其极易受到热胁迫的影响,热胁迫会破坏水分关系、光合作用、呼吸作用和细胞内稳态,最终降低生长和产量。为了生存,植物会部署多方面的热胁迫反应(HSR),该反应整合了钙信号、分子伴侣、抗氧化酶和植物激素网络。本综述综合了植物热胁迫反应过程中植物激素与蛋白质合成之间分子相互作用的最新进展,特别关注两个关键的HSR模块:蛋白质合成途径,尤其是热休克蛋白(HSPs),以及涉及脱落酸、细胞分裂素、乙烯、水杨酸和茉莉酸的植物激素信号网络。它还强调了这些途径通过钙依赖性蛋白激酶(CDPKs)和活性氧(ROS)信号的汇聚。我们提出了以下机制见解:(1)CDPK介导的热休克转录因子(HSFs)和激素响应因子的激活;(2)APX驱动的ROS清除及其对作物耐热性的影响;(3)在高温下提高产量稳定性的激素工程策略。通过整合近期荟萃分析和分子研究的结果,我们确定了生物技术干预的关键节点,如CDPK和APX的过表达,并提出了面向田间的研究重点,包括激素工程作物试验和综合育种方法。这个前瞻性框架有助于指导生物技术干预,以增强作物的恢复力,并支持开发旨在在气候变暖的世界中保障全球粮食安全的气候智能型作物。