Suppr超能文献

利用强聚焦质子束实现高精度质子治疗的陡峭剂量分布。

Sharp dose profiles for high precision proton therapy using strongly focused proton beams.

机构信息

Department of Physics, University of Oslo, 0316, Oslo, Norway.

Department of Medical Physics, Oslo University Hospital, P.O. Box 4953, 0424, Nydalen, Oslo, Norway.

出版信息

Sci Rep. 2022 Nov 7;12(1):18919. doi: 10.1038/s41598-022-22677-0.

Abstract

The main objective of radiotherapy is to exploit the curative potential of ionizing radiation while inflicting minimal radiation-induced damage to healthy tissue and sensitive organs. Proton beam therapy has been developed to irradiate the tumor with higher precision and dose conformity compared to conventional X-ray irradiation. The dose conformity of this treatment modality may be further improved if narrower proton beams are used. Still, this is limited by multiple Coulomb scattering of protons through tissue. The primary aim of this work was to develop techniques to produce narrow proton beams and investigate the resulting dose profiles. We introduced and assessed three different proton beam shaping techniques: (1) metal collimators (100/150 MeV), (2) focusing of conventional- (100/150 MeV), and (3) focusing of high-energy (350 MeV, shoot-through) proton beams. Focusing was governed by the initial value of the Twiss parameter [Formula: see text] ([Formula: see text]), and can be implemented with magnetic particle accelerator optics. The dose distributions in water were calculated by Monte Carlo simulations using Geant4, and evaluated by target to surface dose ratio (TSDR) in addition to the transverse beam size ([Formula: see text]) at the target. The target was defined as the location of the Bragg peak or the focal point. The different techniques showed greatly differing dose profiles, where focusing gave pronouncedly higher relative target dose and efficient use of primary protons. Metal collimators with radii [Formula: see text] gave low TSDRs ([Formula: see text]) and large [Formula: see text]([Formula: see text]). In contrast, a focused beam of conventional ([Formula: see text]) energy produced a very high TSDR ([Formula: see text]) with similar [Formula: see text] as a collimated beam. High-energy focused beams were able to produce TSDRs [Formula: see text] and [Formula: see text] around 1.5 mm. From this study, it appears very attractive to implement magnetically focused proton beams in radiotherapy of small lesions or tumors in close vicinity to healthy organs at risk. This can also lead to a paradigm change in spatially fractionated radiotherapy. Magnetic focusing would facilitate FLASH irradiation due to low losses of primary protons.

摘要

放射治疗的主要目标是利用电离辐射的治疗潜力,同时将最小的辐射诱导损伤施加于健康组织和敏感器官。与传统 X 射线照射相比,质子束疗法的发展旨在更精确地照射肿瘤并实现更好的剂量适形度。如果使用更窄的质子束,这种治疗方式的剂量适形度可以进一步提高。然而,这受到质子在组织中多次库仑散射的限制。这项工作的主要目的是开发产生窄质子束的技术,并研究由此产生的剂量分布。我们引入并评估了三种不同的质子束成形技术:(1)金属准直器(100/150 MeV),(2)常规质子束聚焦(100/150 MeV),和(3)高能质子束聚焦(350 MeV,贯穿)。聚焦由 Twiss 参数的初始值[Formula: see text]([Formula: see text])控制,并且可以使用磁粒子加速器光学来实现。水的剂量分布通过使用 Geant4 的蒙特卡罗模拟进行计算,并通过靶区到表面剂量比(TSDR)以及靶区处的横向束直径[Formula: see text]([Formula: see text])进行评估。靶区定义为布拉格峰或焦点的位置。不同的技术显示出非常不同的剂量分布,其中聚焦给出了明显更高的相对靶区剂量和有效利用初级质子。半径为[Formula: see text]的金属准直器产生低 TSDRs([Formula: see text])和大的[Formula: see text]([Formula: see text])。相比之下,具有常规[Formula: see text]能量的聚焦束产生非常高的 TSDR([Formula: see text]),其[Formula: see text]与准直束相似。高能聚焦束能够在大约 1.5 毫米处产生 TSDRs [Formula: see text]和[Formula: see text]。从这项研究中,在靠近健康风险器官的小病变或肿瘤的放射治疗中实施磁聚焦质子束似乎非常有吸引力。这也可能导致空间分割放射治疗的范式转变。由于初级质子的损失低,磁聚焦将促进 FLASH 照射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3148/9640624/f100af85ff5e/41598_2022_22677_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验