Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
Arizona State University, SCAI, 6161 E Mayo Blvd, Phoenix, AZ, 85054, USA.
J Digit Imaging. 2023 Feb;36(1):105-113. doi: 10.1007/s10278-022-00712-w. Epub 2022 Nov 7.
Improving detection and follow-up of recommendations made in radiology reports is a critical unmet need. The long and unstructured nature of radiology reports limits the ability of clinicians to assimilate the full report and identify all the pertinent information for prioritizing the critical cases. We developed an automated NLP pipeline using a transformer-based ClinicalBERT model which was fine-tuned on 3 M radiology reports and compared against the traditional BERT model. We validated the models on both internal hold-out ED cases from EUH as well as external cases from Mayo Clinic. We also evaluated the model by combining different sections of the radiology reports. On the internal test set of 3819 reports, the ClinicalBERT model achieved 0.96 f1-score while the BERT also achieved the same performance using the reason for exam and impression sections. However, ClinicalBERT outperformed BERT on the external test dataset of 2039 reports and achieved the highest performance for classifying critical finding reports (0.81 precision and 0.54 recall). The ClinicalBERT model has been successfully applied to large-scale radiology reports from 5 different sites. Automated NLP system that can analyze free-text radiology reports, along with the reason for the exam, to identify critical radiology findings and recommendations could enable automated alert notifications to clinicians about the need for clinical follow-up. The clinical significance of our proposed model is that it could be used as an additional layer of safeguard to clinical practice and reduce the chance of important findings reported in a radiology report is not overlooked by clinicians as well as provide a way to retrospectively track large hospital databases for evaluating the documentation of the critical findings.
提高放射学报告中建议的检测和随访率是一项亟待满足的关键需求。放射学报告冗长且结构不规范,限制了临床医生全面吸收报告并识别所有相关信息以确定关键病例优先级的能力。我们开发了一种使用基于转换器的 ClinicalBERT 模型的自动化 NLP 管道,该模型在 3M 放射学报告上进行了微调,并与传统的 BERT 模型进行了比较。我们在 EUH 的内部急诊案例和 Mayo 诊所的外部案例上验证了这些模型。我们还通过组合放射学报告的不同部分来评估模型。在 3819 份报告的内部测试集中,ClinicalBERT 模型的 f1 得分为 0.96,而 BERT 仅使用检查原因和印象部分也达到了相同的性能。然而,ClinicalBERT 在 2039 份外部测试数据集上的表现优于 BERT,并在分类关键发现报告方面取得了最高性能(0.81 精度和 0.54 召回率)。ClinicalBERT 模型已成功应用于来自 5 个不同站点的大规模放射学报告。能够分析自由文本放射学报告以及检查原因的自动化 NLP 系统可以识别关键的放射学发现和建议,并向临床医生发出有关临床随访需求的自动警报通知。我们提出的模型的临床意义在于,它可以作为临床实践的额外保障层,减少临床医生忽视放射学报告中重要发现的机会,并提供一种方法来回顾性跟踪大型医院数据库,以评估关键发现的记录情况。