Suppr超能文献

无偏压太阳能驱动合成气生产:一种具有单原子钴的FeO光阳极与银钯阴极集成。

Bias-Free Solar-Driven Syngas Production: A Fe O Photoanode Featuring Single-Atom Cobalt Integrated with a Silver-Palladium Cathode.

作者信息

Zhao Bin, Huang Xiaojuan, Ding Yong, Bi Yingpu

机构信息

State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China.

University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202213067. doi: 10.1002/anie.202213067. Epub 2022 Dec 7.

Abstract

Photoelectrochemical syngas production from aqueous CO is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe O photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 μmol cm  h (CO/H ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe O photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO reduction device with solar-to-CO and solar-to-H conversion efficiencies up to 1.33 and 1.36 %, respectively.

摘要

通过水性CO进行光电化学合成气生产是一种很有前景的碳捕获和利用技术。在此,我们展示了通过将单原子钴催化剂修饰的α-Fe₂O₃光阳极与双金属Ag/Pd合金阴极相结合来高效且可调地生产合成气。在人工阳光(AM 1.5 G)下实现了创纪录的81.9 μmol cm⁻² h⁻¹的合成气生产活性(CO/H₂比例:≈1 : 1),且具有出色的耐久性。系统研究表明,Co单原子有效地从Fe₂O₃光阳极中提取空穴,并作为促进析氧的活性位点。同时,双金属阴极中的Pd和Ag原子选择性地吸附CO和质子以促进CO生成。进一步与光伏组件结合,以利用大于600 nm的太阳光,可得到一种无偏压的CO还原装置,其太阳能到CO和太阳能到H₂的转换效率分别高达1.33%和1.36%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验