Suppr超能文献

用机器学习从血液学数据预测肺部甲型流感病毒感染。

Predicting Influenza A Virus Infection in the Lung from Hematological Data with Machine Learning.

机构信息

Frankfurt Institute for Advanced Studiesgrid.417999.b, Frankfurt am Main, Germany.

Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany.

出版信息

mSystems. 2022 Dec 20;7(6):e0045922. doi: 10.1128/msystems.00459-22. Epub 2022 Nov 8.

Abstract

The tracking of pathogen burden and host responses with minimally invasive methods during respiratory infections is central for monitoring disease development and guiding treatment decisions. Utilizing a standardized murine model of respiratory influenza A virus (IAV) infection, we developed and tested different supervised machine learning models to predict viral burden and immune response markers, i.e., cytokines and leukocytes in the lung, from hematological data. We performed independently infection experiments to acquire extensive data for training and testing of the models. We show here that lung viral load, neutrophil counts, cytokines (such as gamma interferon [IFN-γ] and interleukin 6 [IL-6]), and other lung infection markers can be predicted from hematological data. Furthermore, feature analysis of the models showed that blood granulocytes and platelets play a crucial role in prediction and are highly involved in the immune response against IAV. The proposed tools pave the path toward improved tracking and monitoring of influenza virus infections and possibly other respiratory infections based on minimally invasively obtained hematological parameters. During the course of respiratory infections such as influenza, we do have a very limited view of immunological indicators to objectively and quantitatively evaluate the outcome of a host. Methods for monitoring immunological markers in a host's lungs are invasive and expensive, and some of them are not feasible to perform. Using machine learning algorithms, we show for the first time that minimally invasively acquired hematological parameters can be used to infer lung viral burden, leukocytes, and cytokines following influenza virus infection in mice. The potential of the framework proposed here consists of a new qualitative vision of the disease processes in the lung compartment as a noninvasive tool.

摘要

利用微创方法跟踪呼吸道感染中的病原体负担和宿主反应,对于监测疾病进展和指导治疗决策至关重要。我们利用标准化的小鼠呼吸道流感病毒(IAV)感染模型,开发并测试了不同的监督机器学习模型,以从血液学数据中预测病毒负担和免疫反应标志物,即肺部的细胞因子和白细胞。我们进行了独立的感染实验,以获取广泛的数据来训练和测试模型。我们在这里表明,可以从血液学数据中预测肺部病毒载量、中性粒细胞计数、细胞因子(如γ干扰素[IFN-γ]和白细胞介素 6 [IL-6])和其他肺部感染标志物。此外,模型的特征分析表明,血液中的粒细胞和血小板在预测中起着至关重要的作用,并且高度参与了对 IAV 的免疫反应。所提出的工具为基于微创获得的血液学参数来改善对流感病毒感染和可能的其他呼吸道感染的跟踪和监测铺平了道路。在流感等呼吸道感染过程中,我们对客观和定量评估宿主结果的免疫学指标的了解非常有限。监测宿主肺部免疫标志物的方法具有侵入性和昂贵性,并且其中一些方法不可行。我们首次使用机器学习算法表明,微创获得的血液学参数可用于推断感染流感病毒后小鼠肺部的病毒负担、白细胞和细胞因子。这里提出的框架的潜力在于作为一种非侵入性工具,为肺部隔室的疾病过程提供了一种新的定性视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d70/9765554/c1c45b3d0b27/msystems.00459-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验