Wu Na, Xing Mingyan, Li Yingfeng, Xu Qing, Li Ke
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
Appl Biochem Biotechnol. 2023 Feb;195(2):1574-1588. doi: 10.1007/s12010-022-04169-z. Epub 2022 Nov 8.
Solar-driven biocatalysis technologies can combine inorganic photocatalytic materials with biological catalysts to convert CO, light, and water into chemicals, offering the promise of high energy efficiency and a broader product scope than that of natural photosynthesis. Solar energy is the most abundant renewable energy source on earth, but it cannot be directly utilized by current industrial microorganisms. Therefore, the establishment of a solar-driven bio-catalysis platform, a bridge between solar energy and heterotrophic microorganisms, can dramatically increase carbon flux in biomanufacturing systems and consequently may revolutionize the biorefinery. This review first discusses the main applications of microbe-photocatalyst hybrid (MPH) systems in biorefinery processes. Then, various strategies to improve the electron transfer by microorganisms at the inorganic photocatalytic material interface are discussed, especially biohybrid systems based on autotrophic or heterotrophic bacteria and photocatalytic materials. Finally, we discuss the current challenges and offer potential solutions for the development of MPH systems.
太阳能驱动的生物催化技术可以将无机光催化材料与生物催化剂相结合,将一氧化碳、光和水转化为化学物质,有望实现比自然光合作用更高的能源效率和更广泛的产品范围。太阳能是地球上最丰富的可再生能源,但目前的工业微生物无法直接利用它。因此,建立一个太阳能驱动的生物催化平台,作为太阳能与异养微生物之间的桥梁,可以显著增加生物制造系统中的碳通量,从而可能彻底改变生物炼制过程。本文综述首先讨论了微生物-光催化剂混合(MPH)系统在生物炼制过程中的主要应用。然后,讨论了通过微生物在无机光催化材料界面改善电子转移的各种策略,特别是基于自养或异养细菌与光催化材料的生物混合系统。最后,我们讨论了当前的挑战,并为MPH系统的发展提供了潜在的解决方案。