Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
Nat Rev Microbiol. 2016 Nov;14(11):692-706. doi: 10.1038/nrmicro.2016.130. Epub 2016 Sep 26.
Autotrophic microorganisms convert CO into biomass by deriving energy from light or inorganic electron donors. These CO-fixing microorganisms have a large, but so far only partially realized, potential for the sustainable production of chemicals and biofuels. Productivities have been improved in autotrophic hosts through the introduction of production pathways and the modification of autotrophic systems by genetic engineering. In addition, approaches are emerging in which CO fixation pathways and energy-harvesting systems are transplanted into heterotrophic model microorganisms. Alternative promising concepts are hybrid production systems of autotrophs and heterotrophs, and bio-inorganic hybrids of autotrophic microorganisms with electrocatalysts or light-harvesting semiconductor materials. In this Review, we discuss recent advances and bottlenecks for engineering microbial autotrophy and explore novel strategies that will pave the way towards improved microbial autotrophic production platforms.
自养微生物通过从光或无机电子供体中获取能量将 CO 转化为生物量。这些 CO 固定微生物具有很大的、但迄今为止仅部分实现的可持续生产化学品和生物燃料的潜力。通过引入生产途径和遗传工程对自养系统进行修饰,已经提高了自养宿主的生产力。此外,一些方法也正在出现,其中 CO 固定途径和能量收集系统被移植到异养模式微生物中。有前途的替代概念是自养生物和异养生物的混合生产系统,以及自养微生物与电催化剂或光收集半导体材料的生物无机杂交体。在这篇综述中,我们讨论了工程微生物自养的最新进展和瓶颈,并探讨了将为改进微生物自养生产平台铺平道路的新策略。