Suppr超能文献

突变对 NPAC 结构动力学的影响:来自 MD 模拟的机制见解。

Impact of Mutations on NPAC Structural Dynamics: Mechanistic Insights from MD Simulations.

机构信息

ICRM-CNR , Via Mario Bianco 9 , 20131 Milano , Italy.

Department of Biology and Biotechnology , University of Pavia , Via Ferrata 9 , 27100 Pavia , Italy.

出版信息

J Chem Inf Model. 2019 Sep 23;59(9):3927-3937. doi: 10.1021/acs.jcim.9b00588. Epub 2019 Aug 21.

Abstract

NPAC is a cytokine-like nuclear factor involved in chromatin modification and regulation of gene expression. In humans, the C-terminal domain of NPAC has the conserved structure of the β-hydroxyacid dehydrogenases (β-HAD) protein superfamily, which forms a stable tetrameric core scaffold for demethylase enzymes and organizes multiple sites for chromatin interactions. In spite of the close structural resemblance to other β-HAD family members, the human NPAC dehydrogenase domain lacks a highly conserved catalytic lysine, substituted by a methionine. The reintroduction of the catalytic lysine by M437 K mutation results in a significant decrease of stability of the tetramer. Here, we have computationally investigated the molecular determinants of the functional differences between methionine and lysine-containing NPAC proteins. We find that the single mutation can determine strong consequences in terms of dynamics, stability, and ultimately ability to assemble in supramolecular complexes: the higher stability and lower flexibility of the methionine variant structurally preorganizes the monomer for tetramerization, whereas lysine increases flexibility and favors conformations that, while catalytically active, are not optimal for tetrameric assembly. We combine structure-dynamics analysis to an evolutionary study of NPAC sequences, showing that the methionine mutation occurs in a specifically flexible region of the lysine-containing protein, flanked by two domains that concentrate most of the stabilizing interactions. In our model, such separation of stability nuclei and flexible regions appears to favor the functional innovability of the protein.

摘要

NPAC 是一种细胞因子样核因子,参与染色质修饰和基因表达的调控。在人类中,NPAC 的 C 末端结构域具有 β-羟基酸脱氢酶(β-HAD)蛋白超家族的保守结构,它为去甲基化酶形成稳定的四聚体核心支架,并组织多个染色质相互作用位点。尽管与其他 β-HAD 家族成员具有密切的结构相似性,但人类 NPAC 脱氢酶结构域缺乏高度保守的催化赖氨酸,被蛋氨酸取代。通过 M437 K 突变重新引入催化赖氨酸会导致四聚体的稳定性显著降低。在这里,我们通过计算方法研究了含蛋氨酸和赖氨酸的 NPAC 蛋白功能差异的分子决定因素。我们发现,单一突变可以在动力学、稳定性和最终组装超分子复合物的能力方面产生强烈的后果:蛋氨酸变体的单突变可以在结构上对单体进行预组织,以促进四聚体化,而赖氨酸增加了灵活性,并有利于虽然具有催化活性但不是四聚体组装最佳的构象。我们将结构动力学分析与 NPAC 序列的进化研究相结合,表明蛋氨酸突变发生在含有赖氨酸的蛋白质的一个特定的柔性区域,该区域由两个集中大多数稳定相互作用的结构域所包围。在我们的模型中,这种稳定性核心和柔性区域的分离似乎有利于蛋白质的功能创新。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验