Suppr超能文献

利用 ADAPT 平台优化抗体-抗原结合亲和力。

Optimizing Antibody-Antigen Binding Affinities with the ADAPT Platform.

机构信息

National Research Council Canada, Human Health Therapeutics Research Centre, Montreal, QC, Canada.

出版信息

Methods Mol Biol. 2023;2552:361-374. doi: 10.1007/978-1-0716-2609-2_20.

Abstract

The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform guides the selection of mutants that improve/modulate the affinity of antibodies and other biologics. Predicted affinities are based on a consensus z-score from three scoring functions. Computational predictions are interleaved with experimental validation, significantly enhancing the robustness of the design and selection of mutants. A key step is an initial exhaustive virtual single-mutant scan that identifies hot spots and the mutations predicted to improve affinity. A small number of proposed single mutants are then produced and assayed. Only the validated single mutants (i.e., having improved affinity) are used to design double and higher-order mutants in subsequent rounds of design, avoiding the combinatorial explosion that arises from random mutagenesis. Typically, with a total of about 30-50 designed single, double, and triple mutants, affinity improvements of 10- to 100-fold are obtained.

摘要

ADAPT(抗体和蛋白质治疗物的辅助设计)平台指导突变体的选择,以提高/调节抗体和其他生物制剂的亲和力。预测的亲和力基于三个评分函数的共识 z 分数。计算预测与实验验证交织在一起,显著提高了设计和突变体选择的稳健性。一个关键步骤是初始的详尽虚拟单突变体扫描,该扫描可识别热点和预测可提高亲和力的突变。然后生产和检测少量建议的单突变体。只有经过验证的单突变体(即具有提高的亲和力)用于在随后的设计轮次中设计双突变体和更高阶突变体,从而避免了随机诱变产生的组合爆炸。通常,通过总共约 30-50 个设计的单、双和三突变体,可以获得 10-100 倍的亲和力提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验