Suppr超能文献

五项治疗性抗体分析的计算可开发性指南。

Five computational developability guidelines for therapeutic antibody profiling.

机构信息

Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom.

Department of Antibody Discovery and Protein Engineering, MedImmune, Cambridge CB21 6GH, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4025-4030. doi: 10.1073/pnas.1810576116. Epub 2019 Feb 14.

Abstract

Therapeutic mAbs must not only bind to their target but must also be free from "developability issues" such as poor stability or high levels of aggregation. While small-molecule drug discovery benefits from Lipinski's rule of five to guide the selection of molecules with appropriate biophysical properties, there is currently no in silico analog for antibody design. Here, we model the variable domain structures of a large set of post-phase-I clinical-stage antibody therapeutics (CSTs) and calculate in silico metrics to estimate their typical properties. In each case, we contextualize the CST distribution against a snapshot of the human antibody gene repertoire. We describe guideline values for five metrics thought to be implicated in poor developability: the total length of the complementarity-determining regions (CDRs), the extent and magnitude of surface hydrophobicity, positive charge and negative charge in the CDRs, and asymmetry in the net heavy- and light-chain surface charges. The guideline cutoffs for each property were derived from the values seen in CSTs, and a flagging system is proposed to identify nonconforming candidates. On two mAb drug discovery sets, we were able to selectively highlight sequences with developability issues. We make available the Therapeutic Antibody Profiler (TAP), a computational tool that builds downloadable homology models of variable domain sequences, tests them against our five developability guidelines, and reports potential sequence liabilities and canonical forms. TAP is freely available at opig.stats.ox.ac.uk/webapps/sabdab-sabpred/TAP.php.

摘要

治疗性单抗不仅必须与靶标结合,还必须避免出现“可开发性问题”,例如稳定性差或聚集程度高。虽然小分子药物发现得益于 Lipinski 的五规则来指导选择具有适当物理化学性质的分子,但目前还没有针对抗体设计的计算模拟。在这里,我们对一大组处于 I 期后临床阶段的抗体治疗药物(CST)的可变区结构进行建模,并计算计算指标来估计它们的典型特性。在每种情况下,我们都将 CST 分布与人类抗体基因库的快照进行对比。我们描述了五个被认为与较差可开发性相关的指标的指南值:互补决定区(CDR)的总长度、表面疏水性的程度和幅度、CDR 中的正电荷和负电荷以及净重链和轻链表面电荷的不对称性。每个属性的指南截止值是从 CST 中观察到的值推导而来的,并提出了一个标记系统来识别不符合要求的候选者。在两个单克隆抗体药物发现数据集上,我们能够有选择地突出显示具有可开发性问题的序列。我们提供了 Therapeutic Antibody Profiler(TAP),这是一种计算工具,它可以构建可变区序列的可下载同源模型,根据我们的五个可开发性指南对其进行测试,并报告潜在的序列缺陷和规范形式。TAP 可在 opig.stats.ox.ac.uk/webapps/sabdab-sabpred/TAP.php 免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d775/6410772/7f2d891fa5eb/pnas.1810576116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验