Jiao Ruwang, Xue Bing, Zhang Mengjie
IEEE Trans Cybern. 2023 Dec;53(12):7773-7786. doi: 10.1109/TCYB.2022.3218345. Epub 2023 Nov 29.
Evolutionary multiobjective feature selection (FS) has gained increasing attention in recent years. However, it still faces some challenges, for example, the frequently appeared duplicated solutions in either the search space or the objective space lead to the diversity loss of the population, and the huge search space results in the low search efficiency of the algorithm. Minimizing the number of selected features and maximizing the classification performance are two major objectives in FS. Usually, the fitness function of a single-objective FS problem linearly aggregates these two objectives through a weighted sum method. Given a predefined direction (weight) vector, the single-objective FS task can explore the specified direction or area extensively. Different direction vectors result in different search directions in the objective space. Motivated by this, this article proposes a multiform framework, which solves a multiobjective FS task combined with its auxiliary single-objective FS tasks in a multitask environment. By setting different direction vectors, promising feature subsets from single-objective FS tasks can be utilized, to boost the evolutionary search of the multiobjective FS task. By comparing with five classical and state-of-the-art multiobjective evolutionary algorithms, as well as four well-performing FS algorithms, the effectiveness and efficiency of the proposed method are verified via extensive experiments on 18 classification datasets. Furthermore, the effectiveness of the proposed method is also investigated in a noisy environment.
近年来,进化多目标特征选择(FS)受到了越来越多的关注。然而,它仍然面临一些挑战,例如,在搜索空间或目标空间中频繁出现的重复解会导致种群多样性的丧失,并且巨大的搜索空间会导致算法的搜索效率低下。在特征选择中,最小化所选特征的数量和最大化分类性能是两个主要目标。通常,单目标特征选择问题的适应度函数通过加权和方法将这两个目标线性聚合。给定一个预定义的方向(权重)向量,单目标特征选择任务可以广泛地探索指定的方向或区域。不同的方向向量会导致目标空间中不同的搜索方向。受此启发,本文提出了一种多形式框架,该框架在多任务环境中结合其辅助单目标特征选择任务来解决多目标特征选择任务。通过设置不同的方向向量,可以利用单目标特征选择任务中具有前景的特征子集,以促进多目标特征选择任务的进化搜索。通过与五种经典的和最新的多目标进化算法以及四种性能良好的特征选择算法进行比较,在18个分类数据集上进行了广泛的实验,验证了所提方法的有效性和效率。此外,还在有噪声的环境中研究了所提方法的有效性。