Suppr超能文献

基于信息论的非支配排序蚁群优化算法在分类多目标特征选择中的应用

Information-Theory-based Nondominated Sorting Ant Colony Optimization for Multiobjective Feature Selection in Classification.

作者信息

Wang Ziqian, Gao Shangce, Zhou MengChu, Sato Syuhei, Cheng Jiujun, Wang Jiahai

出版信息

IEEE Trans Cybern. 2023 Aug;53(8):5276-5289. doi: 10.1109/TCYB.2022.3185554. Epub 2023 Jul 18.

Abstract

Feature selection (FS) has received significant attention since the use of a well-selected subset of features may achieve better classification performance than that of full features in many real-world applications. It can be considered as a multiobjective optimization consisting of two objectives: 1) minimizing the number of selected features and 2) maximizing classification performance. Ant colony optimization (ACO) has shown its effectiveness in FS due to its problem-guided search operator and flexible graph representation. However, there lacks an effective ACO-based approach for multiobjective FS to handle the problematic characteristics originated from the feature interactions and highly discontinuous Pareto fronts. This article presents an Information-theory-based Nondominated Sorting ACO (called INSA) to solve the aforementioned difficulties. First, the probabilistic function in ACO is modified based on the information theory to identify the importance of features; second, a new ACO strategy is designed to construct solutions; and third, a novel pheromone updating strategy is devised to ensure the high diversity of tradeoff solutions. INSA's performance is compared with four machine-learning-based methods, four representative single-objective evolutionary algorithms, and six state-of-the-art multiobjective ones on 13 benchmark classification datasets, which consist of both low and high-dimensional samples. The empirical results verify that INSA is able to obtain solutions with better classification performance using features whose count is similar to or less than those obtained by its peers.

摘要

特征选择(FS)自被提出以来受到了广泛关注,因为在许多实际应用中,使用精心挑选的特征子集可能比使用全部特征能获得更好的分类性能。它可以被视为一个包含两个目标的多目标优化问题:1)最小化所选特征的数量;2)最大化分类性能。蚁群优化(ACO)由于其问题导向的搜索算子和灵活的图表示方式,在特征选择中已显示出有效性。然而,缺乏一种基于ACO的有效方法来处理多目标特征选择,以应对由特征交互和高度不连续的帕累托前沿所产生的问题特性。本文提出了一种基于信息论的非支配排序蚁群优化算法(称为INSA)来解决上述难题。首先,基于信息论对ACO中的概率函数进行修改,以确定特征的重要性;其次,设计一种新的ACO策略来构建解决方案;第三,设计一种新颖的信息素更新策略,以确保折衷解决方案的高多样性。在由低维和高维样本组成的13个基准分类数据集上,将INSA的性能与四种基于机器学习的方法、四种代表性的单目标进化算法以及六种先进的多目标算法进行了比较。实证结果验证了INSA能够使用数量与同行相似或更少的特征获得具有更好分类性能的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验