Suppr超能文献

铁-硅-硫三元系的电阻率:对月球核心热对流停止时间的影响。

Electrical resistivity of the Fe-Si-S ternary system: implications for timing of thermal convection shutdown in the lunar core.

作者信息

Littleton Joshua A H, Yong Wenjun, Secco Richard A

机构信息

Department of Earth Sciences, University of Western Ontario, London, ON, N6A3K7, Canada.

Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.

出版信息

Sci Rep. 2022 Nov 8;12(1):19031. doi: 10.1038/s41598-022-21904-y.

Abstract

The composition of the lunar core has been suggested to be Fe-rich with varying amounts of lighter elements, such as Si and S. Presence of Si and S affects electrical and thermal transport properties and thus influences core thermal processes and evolution. Paleomagnetic observations constrain a high intensity magnetic field that ceases shortly after formation of the moon (~ 3.5-4.2 Ga year ago), and thermal convection in the core may contribute to generation of this field. In this study, the electrical resistivity of Fe-14 wt% Si-3 wt% S was measured in both solid and molten states at pressures up to 5 GPa and thermal conductivity was calculated via the Wiedemann-Franz Law from the electrical measurements. The results were used to estimate the adiabatic conductive heat flux of a molten Fe-14 wt% Si-3 wt% S lunar core and compared to a Fe-2-17 wt% Si lunar core, which showed that thermal convection of either core composition shuts down within the duration of the high intensity magnetic field: (1) 3.17-3.72 Ga year ago for a Fe-14 wt% Si-3 wt% S core; and (ii) 3.38-3.86 Ga years ago for a Fe-2-17 wt% Si core. Results favouring compatibility of these core compositions with paleomagnetic observations are strongly dependent on the temperature of the core-mantle boundary and time-dependent mantle-side heat flux.

摘要

月球核心的成分被认为富含铁,并含有不同数量的较轻元素,如硅和硫。硅和硫的存在会影响电和热的传输特性,从而影响核心的热过程和演化。古地磁观测限制了一个高强度磁场,该磁场在月球形成后不久(约35亿至42亿年前)就会消失,核心中的热对流可能有助于产生这个磁场。在这项研究中,测量了Fe-14 wt% Si-3 wt% S在高达5 GPa压力下的固态和熔融态的电阻率,并根据电测量结果通过维德曼-夫兰兹定律计算了热导率。结果被用于估计熔融的Fe-14 wt% Si-3 wt% S月球核心的绝热传导热通量,并与Fe-2-17 wt% Si月球核心进行比较,结果表明,在高强度磁场持续时间内,任何一种核心成分的热对流都会停止:(1)对于Fe-14 wt% Si-3 wt% S核心,在31.7亿至37.2亿年前;(2)对于Fe-2-17 wt% Si核心,在33.8亿至38.6亿年前。这些核心成分与古地磁观测结果相符的结果强烈依赖于核幔边界的温度和随时间变化的地幔侧热通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a4b/9643352/7cea42c1ea83/41598_2022_21904_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验