Nielsen Sune G, Bekaert David V, Auro Maureen
NIRVANA laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
Nat Commun. 2021 Mar 22;12(1):1817. doi: 10.1038/s41467-021-22155-7.
Isotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.
对月球和地球岩石的同位素测量结果显示,与太阳系中的其他天体不同,几乎在所有同位素体系中,月球都与地球难以区分。然而,这一观测结果与月球起源的标准模型——经典的巨型撞击假说的预测相矛盾。我们在此表明,月球的钒同位素组成相对于地球整体硅酸盐的钒同位素组成,朝球粒陨石值偏移了0.18‰±0.04‰。这种偏移很可能是由于在地球核心形成的主要阶段(巨型撞击前),原始地球上发生了同位素分馏,随后发生了经典的巨型撞击,月球约80%的物质源自具有球粒陨石组成的撞击体。我们的数据排除了巨型撞击后地球与月球之间达到平衡的可能性,并表明撞击体和原始地球主要是从内太阳系的一个共同同位素储库中吸积形成的。