Ojo Babatope O, Arotiba Omotayo A, Mabuba Nonhlangabezo
Department of Chemical Sciences, University of Johannesburg Doornfontein 2028 Johannesburg South Africa
Centre for Nanomaterials Science Research, University of Johannesburg South Africa.
RSC Adv. 2022 Oct 28;12(48):30892-30905. doi: 10.1039/d2ra04876k. eCollection 2022 Oct 27.
The sonoelectrochemical (SEC) oxidation of sulfamethoxazole (SMX) in simulated and actual wastewater on FTO/BaZrTiO, FTO/BaZrTiO and FTO/BaTiO electrodes is hereby presented. Electrodes from piezo-polarizable BaZrTiO, BaZrTiO, and BaTiO materials were prepared by immobilizing these materials on fluorine-doped tin dioxide (FTO) glass. Electrochemical characterization performed on the electrodes using chronoamperometry and electrochemical impedance spectroscopy techniques revealed that the FTO/BaZrTiO anode displayed the highest sonocurrent density response of 2.33 mA cm and the lowest charge transfer resistance of 57 Ω. Compared to other electrodes, these responses signaled a superior mass transfer on the FTO/BaZrTiO anode occasioned by an acoustic streaming effect. Moreover, a degradation efficiency of 86.16% (in simulated wastewater), and total organic carbon (TOC) removal efficiency of 63.16% (in simulated wastewater) and 41.47% (in actual wastewater) were obtained upon applying the FTO/BaZrTiO electrode for SEC oxidation of SMX. The piezo-polarizable impact of the FTO/BaZrTiO electrode was further established by the higher rate constant obtained for the FTO/BaZrTiO electrode as compared to the other electrodes during SEC oxidation of SMX under optimum operational conditions. The piezo-potential effect displayed by the FTO/BaZrTiO electrode can be said to have impacted the generation of reactive species, with hydroxyl radicals playing a predominant role in the degradation of SMX in the SEC system. Additionally, a positive synergistic index obtained for the electrode revealed that the piezo-polarization effect of the FTO/BaZrTiO electrode activated during sonocatalysis combined with the electrochemical oxidation process during SEC oxidation can be advantageous for the decomposition of pharmaceuticals and other organic pollutants in water.
本文介绍了磺胺甲恶唑(SMX)在模拟废水和实际废水中于FTO/BaZrTiO、FTO/BaZrTiO和FTO/BaTiO电极上的声电化学(SEC)氧化。通过将压电可极化的BaZrTiO、BaZrTiO和BaTiO材料固定在氟掺杂二氧化锡(FTO)玻璃上来制备电极。使用计时电流法和电化学阻抗谱技术对电极进行的电化学表征表明,FTO/BaZrTiO阳极显示出最高的声电流密度响应,为2.33 mA/cm²,以及最低的电荷转移电阻,为57 Ω。与其他电极相比,这些响应表明由于声流效应,FTO/BaZrTiO阳极上具有优异的传质性能。此外,在将FTO/BaZrTiO电极用于SMX的SEC氧化时,获得了86.16%(在模拟废水中)的降解效率,以及63.16%(在模拟废水中)和41.47%(在实际废水中)的总有机碳(TOC)去除效率。与其他电极相比,在最佳操作条件下,FTO/BaZrTiO电极在SMX的SEC氧化过程中获得了更高的速率常数,这进一步证实了FTO/BaZrTiO电极的压电可极化影响。可以说,FTO/BaZrTiO电极显示出的压电势效应影响了活性物种的生成,其中羟基自由基在SEC系统中SMX的降解中起主要作用。此外,该电极获得的正协同指数表明,声催化过程中激活的FTO/BaZrTiO电极的压电极化效应与SEC氧化过程中的电化学氧化过程相结合,可能有利于水中药物和其他有机污染物的分解。