Ebata Hiroyuki, Kidoaki Satoru
Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka 819-0395, Japan.
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Biophys Physicobiol. 2022 Sep 13;19:e190036. doi: 10.2142/biophysico.bppb-v19.0036. eCollection 2022.
In living tissues where cells migrate, the spatial distribution of mechanical properties, especially matrix stiffness, is generally heterogeneous, with cell scales ranging from 10 to 1000 μm. Since cell migration in the body plays a critical role in morphogenesis, wound healing, and cancer metastasis, it is essential to understand the migratory dynamics on the matrix with cell-scale stiffness heterogeneity. In general, cell migration is driven by the extension and contraction of the cell body owing to the force from actin polymerization and myosin motors in the actomyosin cytoskeleton. When a cell is placed on a matrix with a simple stiffness gradient, directional migration called durotaxis emerges because of the asymmetric extension and contraction of the pseudopodia, which is accompanied by the asymmetric distribution of focal adhesions. Similarly, to determine cell migration on a matrix with cell-scale stiffness heterogeneity, the interaction between cell-scale stiffness heterogeneity and cellular responses, such as the dynamics of the cell-matrix adhesion site, intracellular prestress, and cell shape, should play a key role. In this review, we summarize systematic studies on the dynamics of cell migration, shaping, and traction force on a matrix with cell-scale stiffness heterogeneity using micro-elastically patterned hydrogels. We also outline the cell migration model based on cell-shaping dynamics that explains the general durotaxis induced by cell-scale stiffness heterogeneity. This review article is an extended version of the Japanese article, Dynamics of Cell Shaping and Migration on the Matrix with Cell-scale Stiffness-heterogeneity, published in SEIBUTSU BUTSURI Vol. 61, p. 152-156 (2021).
在细胞发生迁移的活组织中,机械性能的空间分布,尤其是基质刚度,通常是不均匀的,细胞尺度范围从10到1000μm。由于细胞在体内的迁移在形态发生、伤口愈合和癌症转移中起着关键作用,因此了解细胞尺度刚度异质性基质上的迁移动力学至关重要。一般来说,细胞迁移是由细胞体由于肌动球蛋白细胞骨架中肌动蛋白聚合和肌球蛋白马达产生的力而发生的伸展和收缩所驱动的。当将细胞置于具有简单刚度梯度的基质上时,由于伪足的不对称伸展和收缩,会出现一种称为趋硬性的定向迁移,这伴随着粘着斑的不对称分布。同样,为了确定细胞在具有细胞尺度刚度异质性的基质上的迁移,细胞尺度刚度异质性与细胞反应之间的相互作用,如细胞-基质粘附位点的动力学、细胞内预应力和细胞形状,应该起关键作用。在这篇综述中,我们总结了使用微弹性图案化水凝胶对具有细胞尺度刚度异质性的基质上细胞迁移、塑形和牵引力动力学的系统研究。我们还概述了基于细胞塑形动力学的细胞迁移模型,该模型解释了由细胞尺度刚度异质性引起的一般趋硬性。这篇综述文章是发表在《生物物理》第61卷,第152 - 156页(2021年)的日文文章《细胞尺度刚度异质性基质上的细胞塑形和迁移动力学》的扩展版本。