Babón Juan C, Esteruelas Miguel A, López Ana M
Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
Chem Soc Rev. 2022 Nov 28;51(23):9717-9758. doi: 10.1039/d2cs00399f.
Roles of the hydrogen atoms attached to the metal center of transition metal polyhydride complexes, LMH ( ≥ 3), are analyzed for about forty types of organic reactions catalyzed by such class of species. Reactions involve nearly every main organic functional group and represent friendly environmental procedures of synthesis of relevant and necessary molecules in several areas ranging from energy and environment to medicine or pharmacology. Catalysts are mainly complexes of group 8 metals, along with rhenium and iridium, and manganese and cobalt to a lesser extent. Their MH units can be formed by Kubas-type dihydrogen, elongated dihydrogen, or hydride ligands, which facilitate both the homolytic and heterolytic σ-bond activation reactions and hydrogen transfer processes from the metal center to unsaturated organic molecules. As a consequence of the ability of polyhydride complexes to activate σ-bonds, the vast majority of the reactions catalyzed by derivatives of this class involve at least one σ-bond activation elemental step, whereas two sequential ruptures of σ-bonds and the cross-coupling of the resulting fragments take place in a variety of reactions of C-H functionalization and hydrodefluorination. The hydrogen transfer processes usually generate highly unsaturated metal fragments, which are very reactive and extremely active in interesting C-C coupling reactions. Polyhydride complexes bearing Kubas-type dihydrogen ligands are the last intermediates in dehydrogenation processes, while they can be the first ones in hydrogenation reactions. Polyhydrides coordinating elongated dihydrogen ligands are acidic, while classical hydride complexes behave as Brønsted bases. The combination of the properties of both types of species in a catalytic cycle gives rise to interesting outer-sphere processes. The basic character of the classical hydride ligands also confers them the ability of cooperating in the coordination of acidic molecules such as boranes, which is of great relevance for reactions involving the activation of a B-H bond. Multiple bonds of unsaturated organic molecules also undergo insertion into the M-H bond of the catalysts. Such insertions are a key step in many processes.
针对由这类过渡金属多氢配合物(LMH,≥ 3)催化的约四十种有机反应,分析了与过渡金属多氢配合物金属中心相连的氢原子的作用。这些反应几乎涉及每个主要的有机官能团,代表了从能源、环境到医学或药理学等多个领域合成相关且必要分子的环境友好型合成方法。催化剂主要是第8族金属的配合物,还有铼和铱,锰和钴的含量较少。它们的MH单元可由库巴斯型二氢、拉长的二氢或氢化物配体形成,这有利于均裂和异裂σ键活化反应以及氢从金属中心向不饱和有机分子的转移过程。由于多氢配合物具有活化σ键的能力,这类衍生物催化的绝大多数反应至少涉及一个σ键活化基本步骤,而在各种C-H官能化和加氢脱氟反应中会发生两个连续的σ键断裂以及所得片段的交叉偶联。氢转移过程通常会生成高度不饱和的金属片段,这些片段在有趣的C-C偶联反应中非常活泼且极其活跃。带有库巴斯型二氢配体的多氢配合物是脱氢过程中的最后中间体,而它们在氢化反应中可能是最初的中间体。配位拉长二氢配体的多氢化物呈酸性,而经典的氢化物配合物表现为布朗斯特碱。在催化循环中这两类物质性质的结合产生了有趣的外层球过程。经典氢化物配体的碱性也赋予它们在硼烷等酸性分子配位中协同作用的能力,这对于涉及B-H键活化的反应非常重要。不饱和有机分子的多重键也会插入到催化剂的M-H键中。这种插入是许多过程中的关键步骤。