Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, Oulu, FI-90014, Finland.
Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland.
Adv Sci (Weinh). 2022 Dec;9(36):e2205485. doi: 10.1002/advs.202205485. Epub 2022 Nov 9.
Next-generation, truly soft, and stretchable electronic circuits with material level self-healing functionality require high-performance solution-processable organic conductors capable of autonomously self-healing without external intervention. A persistent challenge is to achieve required performance level as electrical, mechanical, and self-healing properties optimized in tandem are difficult to attain. Here heterogenous multiphase conductor with cocontinuous morphology and macroscale phase separation for ultrafast universally autonomous self-healing with full recovery of pristine tensile and electrical properties in less than 120 and 900 s, respectively, is reported. The multiphase conductor is insensitive to flaws under stretching and achieves a synergistic combination of conductivity up to ≈1.5 S cm , stress at break ≈4 MPa, toughness up to >81 MJ m , and elastic recovery exceeding 2000% strain. Such properties are difficult to achieve simultaneously with any other type of material so far. The solution-processable multiphase conductor offers a paradigm shift for damage tolerant and environmentally resistant soft electronic components and circuits with material level self-healing.
具有材料级自修复功能的新一代真正柔软、可拉伸的电子电路需要高性能的溶液处理有机导体,这些导体能够在没有外部干预的情况下自主自修复。一个持续的挑战是达到所需的性能水平,因为电、机械和自修复性能的优化是难以同时实现的。在这里,报告了具有共连续形态和宏观相分离的多相导体,可实现超快的普遍自主自修复,在不到 120 和 900 s 内分别完全恢复原始拉伸和电性能。多相导体在拉伸下对缺陷不敏感,并实现了高达约 1.5 S cm 的电导率、断裂应力≈4 MPa、韧性高达>81 MJ m 和超过 2000%应变的弹性恢复的协同组合。到目前为止,还没有任何其他类型的材料能够同时实现这些特性。这种溶液处理的多相导体为具有材料级自修复功能的耐损伤和耐环境的软电子元件和电路提供了一种范式转变。