Suppr超能文献

开发并验证一种列线图以预测术后胸腺瘤复发患者的重症肌无力加重情况。

Developing and validating a nomogram to predict myasthenia gravis exacerbation in patients with postoperative thymoma recurrence.

作者信息

Cheng Biqi, Xue Yinping, Gu Shanshan, Yang Hongxia, Liu Peng, Qi Guoyan

机构信息

Center of Treatment of Myasthenia Gravis, People's Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China.

Hebei Provincial Key Laboratory of Myasthenia Gravis, Shijiazhuang, China.

出版信息

Gland Surg. 2022 Oct;11(10):1712-1721. doi: 10.21037/gs-22-549.

Abstract

BACKGROUND

Myasthenia gravis (MG) is one of the most common accessory syndromes for thymoma patients. To reduce MG exacerbation and guide clinical practice, we developed a nomogram for predicting MG exacerbation in patients with postoperative thymoma recurrence.

METHODS

Retrospective study of 176 patients with recurrence following thymoma resection who were admitted to the People's Hospital of Shijiazhuang's Center of Treatment of Myasthenia Gravis between 2013 and 2021. Among them, 120 patients with recurrent thymoma from 2013 to 2020 were selected as the training cohort, and 56 patients in 2021 as the validation cohort. Univariate and multivariate logical regression was used to determine the risk factors and draw the nomogram, and the parameters in the nomogram were proportionally assigned from 0 to 100 points. Finally, the performance of the model is evaluated by internal inspection and external inspection.

RESULTS

Multivariate analysis revealed that postoperative treatment plan and the pathologic classification of the thymoma were independent predictors of MG exacerbation in the training cohort (n=120), so they were used to create the nomogram, which had a well-fit calibration curve and good concordance index of 0.77 [95% confidence interval (CI): 0.69-0.86] for the training cohort and 0.74 (95% CI: 0.58-0.91) for the validation cohort, respectively. Calculations were made to determine the nomogram's sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV). The training cohort were 75.7% (95% CI: 66.1-83.4%), 64.7% (95% CI: 38.6-84.7%), 92.9% (95% CI: 84.5-97.1%) and 30.6% (95% CI: 16.9-48.3%) respectively, while the corresponding validation cohort were 84.1% (95% CI: 69.3-92.8%), 66.7% (95% CI: 35.4-88.7%), 90.2% (95% CI: 75.9-96.8%) and 53.3% (95% CI: 27.4-77.7%) respectively.

CONCLUSIONS

We identified the risk factors for MG exacerbation in patients with postoperative recurrence of thymoma and drew a nomogram, which can be used to calculate the probability of MG exacerbation and guide clinicians to choose post-operative treatment.

摘要

背景

重症肌无力(MG)是胸腺瘤患者最常见的伴随综合征之一。为减少MG病情加重并指导临床实践,我们开发了一种列线图,用于预测胸腺切除术后复发患者的MG病情加重情况。

方法

对2013年至2021年期间在石家庄市重症肌无力治疗中心人民医院收治的176例胸腺切除术后复发患者进行回顾性研究。其中,将2013年至2020年的120例复发性胸腺瘤患者作为训练队列,2021年的56例患者作为验证队列。采用单因素和多因素逻辑回归确定危险因素并绘制列线图,列线图中的参数按比例从0到100分赋值。最后,通过内部验证和外部验证评估模型的性能。

结果

多因素分析显示,训练队列(n = 120)中术后治疗方案和胸腺瘤的病理分类是MG病情加重的独立预测因素,因此用它们来创建列线图。该列线图校准曲线拟合良好,训练队列的一致性指数为0.77 [95%置信区间(CI):0.69 - 0.86],验证队列的一致性指数为0.74(95% CI:0.58 - 0.91)。计算得出列线图的敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。训练队列分别为75.7%(95% CI:66.1 - 83.4%)、64.7%(95% CI:38.6 - 84.7%)、92.9%(95% CI:84.5 - 97.1%)和30.6%(95% CI:16.9 - 48.3%),而相应验证队列分别为84.1%(95% CI:69.3 - 92.8%)、66.7%(95% CI:35.4 - 88.7%)、90.2%(95% CI:75.9 - 96.8%)和53.3%(95% CI:27.4 - 77.7%)。

结论

我们确定了胸腺切除术后复发患者MG病情加重的危险因素并绘制了列线图,该列线图可用于计算MG病情加重的概率并指导临床医生选择术后治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b352/9638789/6a313aae301c/gs-11-10-1712-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验