Suppr超能文献

氮氧化物信号在链霉菌 A3(2) M145 气生菌丝体形成中的作用。

Nitric Oxide Signaling for Aerial Mycelium Formation in Streptomyces coelicolor A3(2) M145.

机构信息

Faculty of Life Sciences, Department of Bioscience, Tokyo University of Agriculturegrid.410772.7, Tokyo, Japan.

出版信息

Appl Environ Microbiol. 2022 Dec 13;88(23):e0122222. doi: 10.1128/aem.01222-22. Epub 2022 Nov 10.

Abstract

Nitric oxide (NO) is a well-known signaling molecule in various organisms. undergoes complex morphological differentiation, similar to that of fungi. A recent study revealed a nitrogen oxide metabolic cycle that forms NO in Streptomyces coelicolor A3(2) M145. Further, endogenously produced NO serves as a signaling molecule. Here, we report that endogenously produced NO regulates cyclic 3',5'-diguanylate (c-di-GMP) levels and controls aerial mycelium formation through the c-di-GMP-binding transcriptional regulator BldD in S. coelicolor A3(2) M145. These observations provide important insights into the mechanisms regulating morphological differentiation. This is the first study to demonstrate a link between NO and c-di-GMP in S. coelicolor A3(2) M145. Morphological differentiation is closely linked to the initiation of secondary metabolism in actinomycetes. Thus, the NO signaling-based regulation of aerial mycelium formation has potential applications in the fermentation industry employing useful actinomycetes. Eukaryotic and prokaryotic cells utilize nitric oxide (NO) to regulate physiological functions. Besides its role as a producer of different bioactive substances, is suggested to be involved in mycelial development regulated by endogenously produced NO. However, the regulatory mechanisms are unclear. In this study, we proposed that NO signaling is involved in aerial mycelium formation in S. coelicolor A3(2) M145. NO serves as a signaling molecule for the regulation of intracellular cyclic 3',5'-diguanylate (c-di-GMP) levels, resulting in aerial mycelium formation controlled by a c-di-GMP receptor, BldD. As the abundant production of valuable secondary metabolites is closely related to the initiation of morphological differentiation in , NO may provide value for application in industrial fermentation by serving as a tool for regulating secondary metabolism.

摘要

一氧化氮(NO)是各种生物中一种众所周知的信号分子。放线菌经历着复杂的形态分化,类似于真菌。最近的一项研究揭示了氮氧化物代谢循环,该循环在变铅青链霉菌 A3(2) M145 中形成 NO。此外,内源性产生的 NO 作为一种信号分子。在这里,我们报告内源性产生的 NO 通过变铅青链霉菌 A3(2) M145 中的 c-di-GMP 结合转录调节剂 BldD 调节环 3',5'-二鸟苷酸(c-di-GMP)水平,并控制气生菌丝体的形成。这些观察结果为调节形态分化的机制提供了重要的见解。这是首次在变铅青链霉菌 A3(2) M145 中证明 NO 和 c-di-GMP 之间存在联系的研究。形态分化与放线菌中次级代谢物的起始密切相关。因此,基于 NO 信号的气生菌丝体形成调控在利用有用放线菌的发酵工业中具有潜在应用价值。真核和原核细胞利用一氧化氮(NO)来调节生理功能。除了作为不同生物活性物质的产生者外,还被认为参与了内源性产生的 NO 调节的菌丝体发育。然而,调控机制尚不清楚。在这项研究中,我们提出 NO 信号参与了变铅青链霉菌 A3(2) M145 气生菌丝体的形成。NO 作为一种信号分子,调节细胞内环 3',5'-二鸟苷酸(c-di-GMP)水平,从而控制由 c-di-GMP 受体 BldD 控制的气生菌丝体形成。由于有价值的次生代谢产物的大量产生与形态分化的启动密切相关,因此,NO 可能作为调节次生代谢的工具,为工业发酵应用提供价值。

相似文献

1
Nitric Oxide Signaling for Aerial Mycelium Formation in Streptomyces coelicolor A3(2) M145.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0122222. doi: 10.1128/aem.01222-22. Epub 2022 Nov 10.
3
4
5
A role of nitrite reductase (NirBD) for NO homeostatic regulation in Streptomyces coelicolor A3(2).
FEMS Microbiol Lett. 2017 Jan;364(1). doi: 10.1093/femsle/fnw241. Epub 2016 Oct 18.
6
Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor.
Sci China Life Sci. 2019 Nov;62(11):1492-1505. doi: 10.1007/s11427-019-9549-8. Epub 2019 Jun 20.
8
Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2).
Microbiology (Reading). 1999 Sep;145 ( Pt 9):2273-2280. doi: 10.1099/00221287-145-9-2273.

引用本文的文献

2
Proteomics fingerprinting reveals importance of iron and oxidative stress in - interactions.
Front Microbiol. 2024 Oct 2;15:1466927. doi: 10.3389/fmicb.2024.1466927. eCollection 2024.
3
Nitric Oxide in Fungi: Production and Function.
J Fungi (Basel). 2024 Feb 15;10(2):155. doi: 10.3390/jof10020155.
5
Host hydrocarbons protect symbiont transmission from a radical host defense.
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2302721120. doi: 10.1073/pnas.2302721120. Epub 2023 Jul 24.

本文引用的文献

1
Nitric oxide regulation of plant metabolism.
Mol Plant. 2022 Feb 7;15(2):228-242. doi: 10.1016/j.molp.2021.12.012. Epub 2021 Dec 28.
2
A Nitric Oxide-Responsive Transcriptional Regulator NsrR Cooperates With Lrp and CRP to Tightly Control the Gene in .
Front Microbiol. 2021 May 21;12:681196. doi: 10.3389/fmicb.2021.681196. eCollection 2021.
3
4
Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development.
Mol Microbiol. 2020 Nov;114(5):808-822. doi: 10.1111/mmi.14581. Epub 2020 Aug 14.
6
BldD, a master developmental repressor, activates antibiotic production in two Streptomyces species.
Mol Microbiol. 2020 Jan;113(1):123-142. doi: 10.1111/mmi.14405. Epub 2019 Oct 19.
7
Insights Into Nitric Oxide Modulated Quorum Sensing Pathways.
Front Microbiol. 2019 Sep 24;10:2174. doi: 10.3389/fmicb.2019.02174. eCollection 2019.
9
Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling.
Compr Physiol. 2019 Jun 12;9(3):1213-1247. doi: 10.1002/cphy.c180026.
10
Towards Understanding the Molecular Basis of Nitric Oxide-Regulated Group Behaviors in Pathogenic Bacteria.
J Innate Immun. 2019;11(3):205-215. doi: 10.1159/000494740. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验