Suppr超能文献

基于投影的注意力时空图用于远程光电容积脉搏波描记法测量的研究

A Study of Projection-Based Attentive Spatial-Temporal Map for Remote Photoplethysmography Measurement.

作者信息

Kim Dae-Yeol, Cho Soo-Young, Lee Kwangkee, Sohn Chae-Bong

机构信息

AI Research Team, Tvstorm, Seoul 13875, Korea.

Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Korea.

出版信息

Bioengineering (Basel). 2022 Nov 2;9(11):638. doi: 10.3390/bioengineering9110638.

Abstract

The photoplethysmography (PPG) signal contains various information that is related to CVD (cardiovascular disease). The remote PPG (rPPG) is a method that can measure a PPG signal using a face image taken with a camera, without a PPG device. Deep learning-based rPPG methods can be classified into three main categories. First, there is a 3D CNN approach that uses a facial image video as input, which focuses on the spatio-temporal changes in the facial video. The second approach is a method that uses a spatio-temporal map (STMap), and the video image is pre-processed using the point where it is easier to analyze changes in blood flow in time order. The last approach uses a preprocessing model with a dichromatic reflection model. This study proposed the concept of an axis projection network (APNET) that complements the drawbacks, in which the 3D CNN method requires significant memory; the STMap method requires a preprocessing method; and the dyschromatic reflection model (DRM) method does not learn long-term temporal characteristics. We also showed that the proposed APNET effectively reduced the network memory size, and that the low-frequency signal was observed in the inferred PPG signal, suggesting that it can provide meaningful results to the study when developing the rPPG algorithm.

摘要

光电容积脉搏波描记术(PPG)信号包含与心血管疾病(CVD)相关的各种信息。远程PPG(rPPG)是一种无需PPG设备,就能使用相机拍摄的面部图像来测量PPG信号的方法。基于深度学习的rPPG方法可分为三大类。第一类是3D卷积神经网络(CNN)方法,它将面部图像视频作为输入,重点关注面部视频中的时空变化。第二种方法是使用时空图(STMap)的方法,视频图像会按照更容易分析血流时间顺序变化的点进行预处理。最后一种方法使用具有双色反射模型的预处理模型。本研究提出了轴投影网络(APNET)的概念,以弥补以下缺点:3D CNN方法需要大量内存;STMap方法需要一种预处理方法;而双色反射模型(DRM)方法无法学习长期时间特征。我们还表明,所提出的APNET有效地减小了网络内存大小,并且在推断出的PPG信号中观察到了低频信号,这表明在开发rPPG算法时,它可以为该研究提供有意义的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7de1/9687348/7b3ef74b42d6/bioengineering-09-00638-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验