Suppr超能文献

用于年龄和性别分类的眼周数据融合

Periocular Data Fusion for Age and Gender Classification.

作者信息

Bisogni Carmen, Cascone Lucia, Narducci Fabio

机构信息

Department of Computer Science, University of Salerno, I-84084 Fisciano, SA, Italy.

出版信息

J Imaging. 2022 Nov 9;8(11):307. doi: 10.3390/jimaging8110307.

Abstract

In recent years, the study of soft biometrics has gained increasing interest in the security and business sectors. These characteristics provide limited biometric information about the individual; hence, it is possible to increase performance by combining numerous data sources to overcome the accuracy limitations of a single trait. In this research, we provide a study on the fusion of periocular features taken from pupils, fixations, and blinks to achieve a demographic classification, i.e., by age and gender. A data fusion approach is implemented for this purpose. To build a trust evaluation of the selected biometric traits, we first employ a concatenation scheme for fusion at the feature level and, at the score level, transformation and classifier-based score fusion approaches (e.g., weighted sum, weighted product, Bayesian rule, etc.). Data fusion enables improved performance and the synthesis of acquired information, as well as its secure storage and protection of the multi-biometric system's original biometric models. The combination of these soft biometrics characteristics combines flawlessly the need to protect individual privacy and to have a strong discriminatory element. The results are quite encouraging, with an age classification accuracy of 84.45% and a gender classification accuracy of 84.62%, respectively. The results obtained encourage the studies on periocular area to detect soft biometrics to be applied when the lower part of the face is not visible.

摘要

近年来,软生物特征识别研究在安全和商业领域越来越受到关注。这些特征提供的关于个体的生物特征信息有限;因此,通过组合多个数据源来克服单一特征的准确性限制,有可能提高性能。在本研究中,我们对从瞳孔、注视和眨眼提取的眼周特征融合进行了研究,以实现人口统计学分类,即按年龄和性别分类。为此实施了一种数据融合方法。为了建立对所选生物特征的信任评估,我们首先采用一种级联方案在特征级别进行融合,并在分数级别采用基于变换和分类器的分数融合方法(例如加权和、加权积、贝叶斯规则等)。数据融合能够提高性能、合成获取的信息,以及安全存储和保护多生物特征系统的原始生物特征模型。这些软生物特征的组合完美地结合了保护个人隐私的需求和拥有强大区分要素的需求。结果相当令人鼓舞,年龄分类准确率分别为84.45%,性别分类准确率为84.62%。所获得的结果鼓励在面部下部不可见时应用眼周区域检测软生物特征的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c775/9692660/4bc3bc7d9b43/jimaging-08-00307-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验