Suppr超能文献

DNA 修复研究的化学工具。

Chemical Tools for the Study of DNA Repair.

机构信息

Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States.

出版信息

Acc Chem Res. 2022 Dec 6;55(23):3495-3506. doi: 10.1021/acs.accounts.2c00608. Epub 2022 Nov 10.

Abstract

DNA repair enzymes continuously provide surveillance throughout our cells, protecting the enclosed DNA from the damage that is constantly arising from oxidation, alkylating species, and radiation. Members of this enzyme class are intimately linked to pathways controlling cancer and inflammation and are promising targets for diagnostics and future therapies. Their study is benefiting widely from the development of new tools and methods aimed at measuring their activities. Here, we provide an Account of our laboratory's work on developing chemical tools to study DNA repair processes , as well as in cells and tissues, and what we have learned by applying them.We first outline early work probing how DNA repair enzymes recognize specific forms of damage by use of chemical analogs of the damage with altered shapes and H-bonding abilities. One outcome of this was the development of an unnatural DNA base that is incorporated selectively by polymerase enzymes opposite sites of missing bases (abasic sites) in DNA, a very common form of damage.We then describe strategies for design of fluorescent probes targeted to base excision repair (BER) enzymes; these were built from small synthetic DNAs incorporating fluorescent moieties to engender light-up signals as the enzymatic reaction proceeds. Examples of targets for these DNA probes include UDG, SMUG1, Fpg, OGG1, MutYH, ALKBH2, ALKBH3, MTH1, and NTH1. Several such strategies were successful and were applied both and in cellular settings; moreover, some were used to discover small-molecule modulators of specific repair enzymes. One of these is the compound SU0268, a potent OGG1 inhibitor that is under investigation in animal models for inhibiting hyperinflammatory responses.To investigate cellular nucleotide sanitation pathways, we designed a series of "two-headed" nucleotides containing a damaged DNA nucleotide at one end and ATP at the other; these were applied to studying the three human sanitation enzymes MTH1, dUTPase, and dITPase, some of which are therapeutic targets. The MTH1 probe (ARGO) was used in collaboration with oncologists to measure the enzyme in tumors as a disease marker and also to develop the first small-molecule activators of the enzyme.We proceed to discuss the development of a "universal" probe of base excision repair processes (UBER), which reacts covalently with abasic site intermediates of base excision repair. UBER probes light up in real time as the reaction occurs, enabling the observation of base excision repair as it occurs in live cells and tissues. UBER probes can also be used in efficient and simple methods for fluorescent labeling of DNA. Finally, we suggest interesting directions for the future of this field in biomedicine and human health.

摘要

DNA 修复酶在我们的细胞中不断进行监控,保护被包裹的 DNA 免受氧化、烷化物种和辐射造成的损伤。这类酶的成员与控制癌症和炎症的途径密切相关,是诊断和未来治疗的有希望的靶点。它们的研究广泛受益于开发新的工具和方法,旨在测量它们的活性。在这里,我们提供了一份关于我们实验室在开发化学工具以研究 DNA 修复过程方面的工作的说明,以及我们在细胞和组织中应用这些工具所学到的知识。

我们首先概述了早期的工作,探讨了 DNA 修复酶如何通过使用具有改变的形状和氢键能力的损伤的化学类似物来识别特定形式的损伤。这项工作的一个结果是开发了一种非天然的 DNA 碱基,它可以被聚合酶酶选择性地掺入 DNA 中缺失碱基(碱基缺失)的位置,这是一种非常常见的损伤形式。

然后,我们描述了针对碱基切除修复 (BER) 酶的荧光探针的设计策略;这些探针由小的合成 DNA 构建而成,其中包含荧光部分,以在酶反应进行时产生点亮信号。这些 DNA 探针的靶标包括 UDG、SMUG1、Fpg、OGG1、MutYH、ALKBH2、ALKBH3、MTH1 和 NTH1。其中一些策略取得了成功,并在细胞环境中进行了应用;此外,其中一些策略还用于发现特定修复酶的小分子调节剂。其中一种是化合物 SU0268,它是一种有效的 OGG1 抑制剂,正在动物模型中进行研究,以抑制过度炎症反应。

为了研究细胞核苷酸清洁途径,我们设计了一系列“双头”核苷酸,一端含有受损的 DNA 核苷酸,另一端含有 ATP;这些核苷酸被用于研究三种人类清洁酶 MTH1、dUTPase 和 dITPase,其中一些是治疗靶点。MTH1 探针 (ARGO) 与肿瘤学家合作用于测量肿瘤中的酶作为疾病标志物,并开发该酶的第一种小分子激活剂。

我们接着讨论了一种“通用”碱基切除修复过程探针 (UBER) 的开发,该探针与碱基切除修复的碱基缺失中间体发生共价反应。UBER 探针在实时反应中点亮,使碱基切除修复在活细胞和组织中发生时能够被观察到。UBER 探针还可用于高效、简单的荧光标记 DNA 方法。最后,我们对该领域在生物医学和人类健康中的未来提出了一些有趣的方向。

相似文献

1
Chemical Tools for the Study of DNA Repair.
Acc Chem Res. 2022 Dec 6;55(23):3495-3506. doi: 10.1021/acs.accounts.2c00608. Epub 2022 Nov 10.
2
Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.
Mutat Res. 2006 Feb 22;594(1-2):120-34. doi: 10.1016/j.mrfmmm.2005.08.008. Epub 2005 Nov 7.
4
A chemical and kinetic perspective on base excision repair of DNA.
Acc Chem Res. 2014 Apr 15;47(4):1238-46. doi: 10.1021/ar400275a. Epub 2014 Mar 19.
5
OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1.
Redox Biol. 2021 Apr;40:101848. doi: 10.1016/j.redox.2020.101848. Epub 2021 Jan 2.
6
An Excimer Clamp for Measuring Damaged-Base Excision by the DNA Repair Enzyme NTH1.
Angew Chem Int Ed Engl. 2020 May 4;59(19):7450-7455. doi: 10.1002/anie.202001516. Epub 2020 Mar 17.
7
Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses.
Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202111829. doi: 10.1002/anie.202111829. Epub 2021 Dec 22.
8
Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
Free Radic Biol Med. 2017 Jun;107:179-201. doi: 10.1016/j.freeradbiomed.2016.11.042. Epub 2016 Nov 27.
9
Ultrafast Oxime Formation Enables Efficient Fluorescence Light-up Measurement of DNA Base Excision.
J Am Chem Soc. 2019 Dec 11;141(49):19379-19388. doi: 10.1021/jacs.9b09812. Epub 2019 Nov 27.
10
Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions.
Acc Chem Res. 2014 Feb 18;47(2):646-55. doi: 10.1021/ar400229d. Epub 2013 Dec 26.

引用本文的文献

1
Enhancement of CRISPR-Cas12a system through universal circular RNA design.
Cell Rep Methods. 2025 Jun 16;5(6):101076. doi: 10.1016/j.crmeth.2025.101076.
2
Smug1 alleviates the reproductive toxicity of 5-FU through functioning in rRNA quality control.
Sci Rep. 2025 Feb 17;15(1):5728. doi: 10.1038/s41598-025-90330-7.
3
Therapeutic upregulation of DNA repair pathways: strategies and small molecule activators.
RSC Med Chem. 2024 Oct 11;15(12):3970-7. doi: 10.1039/d4md00673a.
4
Chimeric d/l-DNA Probes of Base Excision Repair Enable Real-Time Monitoring of Thymine DNA Glycosylase Activity in Live Cells.
J Am Chem Soc. 2023 Aug 9;145(31):17066-17074. doi: 10.1021/jacs.3c03010. Epub 2023 Jul 26.

本文引用的文献

1
Efficient DNA fluorescence labeling via base excision trapping.
Nat Commun. 2022 Aug 26;13(1):5043. doi: 10.1038/s41467-022-32494-8.
2
Enhancing Repair of Oxidative DNA Damage with Small-Molecule Activators of MTH1.
ACS Chem Biol. 2022 Aug 19;17(8):2074-2087. doi: 10.1021/acschembio.2c00038. Epub 2022 Jul 13.
3
Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function.
Science. 2022 Jun 24;376(6600):1471-1476. doi: 10.1126/science.abf8980. Epub 2022 Jun 23.
4
Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses.
Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202111829. doi: 10.1002/anie.202111829. Epub 2021 Dec 22.
5
A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling.
Purinergic Signal. 2022 Mar;18(1):13-59. doi: 10.1007/s11302-021-09814-6. Epub 2021 Nov 10.
6
CUT Domain Proteins in DNA Repair and Cancer.
Cancers (Basel). 2021 Jun 12;13(12):2953. doi: 10.3390/cancers13122953.
7
Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy.
Front Cell Dev Biol. 2021 Mar 23;9:633305. doi: 10.3389/fcell.2021.633305. eCollection 2021.
8
Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives.
Acta Pharm Sin B. 2020 Dec;10(12):2259-2271. doi: 10.1016/j.apsb.2020.02.012. Epub 2020 Mar 30.
9
Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity.
ACS Cent Sci. 2020 Oct 28;6(10):1735-1742. doi: 10.1021/acscentsci.0c00369. Epub 2020 Aug 31.
10
Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during Infection.
J Immunol. 2020 Oct 15;205(8):2231-2242. doi: 10.4049/jimmunol.1901533. Epub 2020 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验