Suppr超能文献

荧光成像线粒体 DNA 碱基切除修复揭示氧化应激反应的动态变化。

Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses.

机构信息

Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.

Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.

出版信息

Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202111829. doi: 10.1002/anie.202111829. Epub 2021 Dec 22.

Abstract

Mitochondrial function in cells declines with aging and with neurodegeneration, due in large part to accumulated mutations in mitochondrial DNA (mtDNA) that arise from deficient DNA repair. However, measuring this repair activity is challenging. We employ a molecular approach for visualizing mitochondrial base excision repair (BER) activity in situ by use of a fluorescent probe (UBER) that reacts rapidly with AP sites resulting from BER activity. Administering the probe to cultured cells revealed signals that were localized to mitochondria, enabling selective observation of mtDNA BER intermediates. The probe showed elevated DNA repair activity under oxidative stress, and responded to suppression of glycosylase activity. Furthermore, the probe illuminated the time lag between the initiation of oxidative stress and the initial step of BER. Absence of MTH1 in cells resulted in elevated demand for BER activity upon extended oxidative stress, while the absence of OGG1 activity limited glycosylation capacity.

摘要

随着年龄的增长和神经退行性变,细胞中的线粒体功能下降,这在很大程度上是由于线粒体 DNA(mtDNA)积累的突变,这些突变是由于 DNA 修复缺陷引起的。然而,测量这种修复活性具有挑战性。我们采用一种分子方法,通过使用荧光探针(UBER)来可视化线粒体碱基切除修复(BER)活性,该探针与 BER 活性产生的 AP 位点快速反应。将探针施用于培养细胞显示出定位于线粒体的信号,从而能够选择性地观察 mtDNA BER 中间体。该探针在氧化应激下显示出升高的 DNA 修复活性,并对糖苷酶活性的抑制做出反应。此外,该探针揭示了氧化应激开始和 BER 初始步骤之间的时间滞后。细胞中缺乏 MTH1 会导致在延长的氧化应激下 BER 活性的需求增加,而 OGG1 活性的缺乏会限制糖基化能力。

相似文献

引用本文的文献

6
Possible Genetic Risks from Heat-Damaged DNA in Food.食物中热损伤DNA可能带来的遗传风险。
ACS Cent Sci. 2023 Jun 1;9(6):1170-1179. doi: 10.1021/acscentsci.2c01247. eCollection 2023 Jun 28.
7
Chemical Tools for the Study of DNA Repair.DNA 修复研究的化学工具。
Acc Chem Res. 2022 Dec 6;55(23):3495-3506. doi: 10.1021/acs.accounts.2c00608. Epub 2022 Nov 10.
8
Dynamic features of human mitochondrial DNA maintenance and transcription.人类线粒体DNA维持与转录的动态特征
Front Cell Dev Biol. 2022 Sep 7;10:984245. doi: 10.3389/fcell.2022.984245. eCollection 2022.

本文引用的文献

4
Mitochondrial uncoupling, ROS generation and cardioprotection.线粒体解偶联、ROS 生成与心脏保护。
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):940-950. doi: 10.1016/j.bbabio.2018.05.019. Epub 2018 May 31.
6
Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase.强效且选择性的 8-氧鸟嘌呤 DNA 糖基化酶抑制剂。
J Am Chem Soc. 2018 Feb 14;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub 2018 Feb 5.
7
DNA repair after oxidative stress: current challenges.氧化应激后的DNA修复:当前挑战
Curr Opin Toxicol. 2018 Feb;7:9-16. doi: 10.1016/j.cotox.2017.10.009. Epub 2017 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验