Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany.
Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.
ACS Nano. 2022 Nov 22;16(11):19523-19532. doi: 10.1021/acsnano.2c09747. Epub 2022 Nov 10.
Human retina- and brain-inspired optoelectronic synapses, which integrate light detection and signal memory functions for data processing, have significant interest because of their potential applications for artificial vision technology. In nature, many animals such as mantis shrimp use polarized light information as well as scalar information including wavelength and intensity; however, a spectropolarimetric organic optoelectronic synapse has been seldom investigated. Herein, we report an organic synaptic phototransistor, consisting of a charge trapping liquid-crystalline perylene bisimide J-aggregate and a charge transporting crystalline dichlorinated naphthalene diimide, that can detect both wavelength and polarization information. The device shows persistent positive and negative photocurrents under low and high voltage conditions, respectively. Furthermore, the aligned organic heterostructure in the thin-film enables linearly polarized light to be absorbed with a dichroic ratio of 1.4 and 3.7 under transverse polarized blue and red light illumination, respectively. These features allow polarized light sensitive postsynaptic functions in the device. Consequently, a simple polarization imaging sensor array is successfully demonstrated using photonic synapses, which suggests that a supramolecular material is an important candidate for the development of spectropolarimetric neuromorphic vision systems.
受人工视觉技术应用的启发,人类视网膜和大脑启发的光电突触将光检测和信号记忆功能集成在一起,用于数据处理,具有重要的研究意义。在自然界中,许多动物(如螳螂虾)利用偏振光信息以及包括波长和强度在内的标量信息;然而,人们很少研究光谱偏振有机光电突触。在此,我们报道了一种由电荷俘获液晶苝二酰亚胺 J-聚集体和电荷传输结晶二氯化萘二酰亚胺组成的有机突触光电晶体管,该晶体管可以检测波长和偏振信息。该器件在低电压和高电压条件下分别表现出持久的正电流和负电流。此外,薄膜中的取向有机异质结构使薄膜在横向偏振蓝光和红光照射下分别具有 1.4 和 3.7 的二色性比,可吸收线性偏振光。这些特性使该器件具有偏振光敏感的突触后功能。因此,成功地使用光子突触演示了一个简单的偏振成像传感器阵列,这表明超分子材料是开发光谱偏振神经形态视觉系统的重要候选材料。