Suppr超能文献

基于K-RAS相关基因突变的算法预测乳腺癌亚型尤其是三阴性乳腺癌患者的治疗反应

K-RAS Associated Gene-Mutation-Based Algorithm for Prediction of Treatment Response of Patients with Subtypes of Breast Cancer and Especially Triple-Negative Cancer.

作者信息

Johnson Heather, Ali Amjad, Zhang Xuhui, Wang Tianyan, Simoulis Athanasios, Wingren Anette Gjörloff, Persson Jenny L

机构信息

Olympia Diagnostics, Inc., Sunnyvale, CA 94086, USA.

Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

Cancers (Basel). 2022 Oct 28;14(21):5322. doi: 10.3390/cancers14215322.

Abstract

Purpose: There is an urgent need for developing new biomarker tools to accurately predict treatment response of breast cancer, especially the deadly triple-negative breast cancer. We aimed to develop gene-mutation-based machine learning (ML) algorithms as biomarker classifiers to predict treatment response of first-line chemotherapy with high precision. Methods: Random Forest ML was applied to screen the algorithms of various combinations of gene mutation profiles of primary tumors at diagnosis using a TCGA Cohort (n = 399) with up to 150 months follow-up as a training set and validated in a MSK Cohort (n = 807) with up to 220 months follow-up. Subtypes of breast cancer including triple-negative and luminal A (ER+, PR+ and HER2−) were also assessed. The predictive performance of the candidate algorithms as classifiers was further assessed using logistic regression, Kaplan−Meier progression-free survival (PFS) plot, and univariate/multivariate Cox proportional hazard regression analyses. Results: A novel algorithm termed the 12-Gene Algorithm based on mutation profiles of KRAS, PIK3CA, MAP3K1, MAP2K4, PTEN, TP53, CDH1, GATA3, KMT2C, ARID1A, RunX1, and ESR1, was identified. The performance of this algorithm to distinguish non-progressed (responder) vs. progressed (non-responder) to treatment in the TCGA Cohort as determined using AUC was 0.96 (95% CI 0.94−0.98). It predicted progression-free survival (PFS) with hazard ratio (HR) of 21.6 (95% CI 11.3−41.5) (p < 0.0001) in all patients. The algorithm predicted PFS in the triple-negative subgroup with HR of 19.3 (95% CI 3.7−101.3) (n = 42, p = 0.000). The 12-Gene Algorithm was validated in the MSK Cohort with a similar AUC of 0.97 (95% CI 0.96−0.98) to distinguish responder vs. non-responder patients, and had a HR of 18.6 (95% CI 4.4−79.2) to predict PFS in the triple-negative subgroup (n = 75, p < 0.0001). Conclusions: The novel 12-Gene algorithm based on multitude gene-mutation profiles identified through ML has a potential to predict breast cancer treatment response to therapies, especially in triple-negative subgroups patients, which may assist personalized therapies and reduce mortality.

摘要

目的

迫切需要开发新的生物标志物工具,以准确预测乳腺癌尤其是致命的三阴性乳腺癌的治疗反应。我们旨在开发基于基因突变的机器学习(ML)算法作为生物标志物分类器,以高精度预测一线化疗的治疗反应。方法:应用随机森林ML算法,以一个随访时间长达150个月的TCGA队列(n = 399)作为训练集,筛选诊断时原发性肿瘤基因突变谱的各种组合算法,并在一个随访时间长达220个月的MSK队列(n = 807)中进行验证。还评估了包括三阴性和腔面A型(ER +、PR +和HER2−)在内的乳腺癌亚型。使用逻辑回归、Kaplan-Meier无进展生存期(PFS)图以及单变量/多变量Cox比例风险回归分析,进一步评估候选算法作为分类器的预测性能。结果:基于KRAS、PIK3CA、MAP3K1、MAP2K4、PTEN、TP53、CDH1、GATA3、KMT2C、ARID1A、RunX1和ESR1基因突变谱,确定了一种名为12基因算法的新算法。在TCGA队列中,该算法使用AUC确定区分治疗无进展(反应者)与进展(无反应者)的性能为0.96(95%CI 0.94−0.98)。在所有患者中,其预测无进展生存期(PFS)的风险比(HR)为21.6(95%CI 11.3−41.5)(p < 0.0001)。该算法在三阴性亚组中预测PFS的HR为19.3(95%CI 3.7−101.3)(n = 42,p = 0.000)。12基因算法在MSK队列中得到验证,区分反应者与无反应者患者的AUC相似,为0.97(95%CI 0.96−0.98),在三阴性亚组中预测PFS的HR为18.6(95%CI 4.4−79.2)(n = 75,p < 0.0001)。结论:基于通过ML识别的多种基因突变谱的新型12基因算法有潜力预测乳腺癌对治疗的反应,尤其是在三阴性亚组患者中,这可能有助于个性化治疗并降低死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/940d/9657686/7b31c2d4e0c6/cancers-14-05322-g001.jpg

相似文献

2
Gene-Mutation-Based Algorithm for Prediction of Treatment Response in Colorectal Cancer Patients.
Cancers (Basel). 2022 Apr 18;14(8):2045. doi: 10.3390/cancers14082045.
3
Survival Outcomes by Mutation Status in Metastatic Breast Cancer.
JCO Precis Oncol. 2018;2018. doi: 10.1200/PO.17.00245. Epub 2018 Apr 25.
5
Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning.
Front Oncol. 2022 Sep 12;12:964605. doi: 10.3389/fonc.2022.964605. eCollection 2022.
6
Ultrasonic Features and Molecular Subtype Predict Somatic Mutations in TP53 and PIK3CA Genes in Breast Cancer.
Acad Radiol. 2022 Dec;29(12):e261-e270. doi: 10.1016/j.acra.2022.02.021. Epub 2022 Apr 18.
7
Identifying Circulating Tumor DNA Mutation Profiles in Metastatic Breast Cancer Patients with Multiline Resistance.
EBioMedicine. 2018 Jun;32:111-118. doi: 10.1016/j.ebiom.2018.05.015. Epub 2018 May 26.
8
A Machine Learning Model to Predict the Triple Negative Breast Cancer Immune Subtype.
Front Immunol. 2021 Sep 17;12:749459. doi: 10.3389/fimmu.2021.749459. eCollection 2021.
9
Mutational Profile of Metastatic Breast Cancers: A Retrospective Analysis.
PLoS Med. 2016 Dec 27;13(12):e1002201. doi: 10.1371/journal.pmed.1002201. eCollection 2016 Dec.
10
Everolimus plus Exemestane for Hormone Receptor-Positive Advanced Breast Cancer: A PAM50 Intrinsic Subtype Analysis of BOLERO-2.
Oncologist. 2019 Jul;24(7):893-900. doi: 10.1634/theoncologist.2018-0407. Epub 2019 Jan 24.

本文引用的文献

1
Gene-Mutation-Based Algorithm for Prediction of Treatment Response in Colorectal Cancer Patients.
Cancers (Basel). 2022 Apr 18;14(8):2045. doi: 10.3390/cancers14082045.
2
Multi-omic machine learning predictor of breast cancer therapy response.
Nature. 2022 Jan;601(7894):623-629. doi: 10.1038/s41586-021-04278-5. Epub 2021 Dec 7.
3
A 23-Gene Classifier urine test for prostate cancer prognosis.
Clin Transl Med. 2021 Mar;11(3):e340. doi: 10.1002/ctm2.340.
5
Initiation of human mammary cell tumorigenesis by mutant KRAS requires YAP inactivation.
Oncogene. 2020 Feb;39(9):1957-1968. doi: 10.1038/s41388-019-1111-0. Epub 2019 Nov 26.
6
Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy.
Front Endocrinol (Lausanne). 2019 May 24;10:245. doi: 10.3389/fendo.2019.00245. eCollection 2019.
7
The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers.
Cancer Cell. 2018 Sep 10;34(3):427-438.e6. doi: 10.1016/j.ccell.2018.08.008.
8
Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care.
NPJ Precis Oncol. 2017 Jun 19;1(1):22. doi: 10.1038/s41698-017-0022-1. eCollection 2017.
10
Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer.
NPJ Breast Cancer. 2017 Apr 26;3:17. doi: 10.1038/s41523-017-0016-8. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验