Suppr超能文献

基于加权基因共表达网络分析(WGCNA)和多种机器学习算法筛选乳腺癌新型生物标志物

Screening of novel biomarkers for breast cancer based on WGCNA and multiple machine learning algorithms.

作者信息

Jin Xiaohu, Huang Zhiqi, Guo Peng, Yuan Ronghua

机构信息

Department of Thyroid and Breast Surgery, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, China.

Department of Gastrointestinal Surgery, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, China.

出版信息

Transl Cancer Res. 2023 Jun 30;12(6):1466-1489. doi: 10.21037/tcr-23-3. Epub 2023 Jun 20.

Abstract

BACKGROUND

Breast cancer (BC) ranks first in incidence among women, with approximately 2 million new cases per year. Therefore, it is essential to investigate emerging targets for BC patients' diagnosis and prognosis.

METHODS

We analyzed gene expression data from 99 normal and 1,081 BC tissues in The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified using "limma" R package, and relevant modules were chosen through Weighted Gene Coexpression Network Analysis (WGCNA). Intersection genes were obtained by matching DEGs to WGCNA module genes. Functional enrichment studies were performed on these genes using Gene Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Biomarkers were screened via Protein-Protein Interaction (PPI) networks and multiple machine-learning algorithms. The Gene Expression Profiling Interactive Analysis (GEPIA), The University of ALabama at Birmingham CANcer (UALCAN), and Human Protein Atlas (HPA) databases were employed to examine mRNA and protein expression of eight biomarkers. Kaplan-Meier mapper tool assessed their prognostic capabilities. Key biomarkers were analyzed via single-cell sequencing, and their relationship with immune infiltration was examined using Tumor Immune Estimation Resource (TIMER) database and "xCell" R package. Lastly, drug prediction was conducted based on the identified biomarkers.

RESULTS

We identified 1,673 DEGs and 542 important genes through differential analysis and WGCNA, respectively. Intersection analysis revealed 76 genes, which play significant roles in immune-related viral infection and IL-17 signaling pathways. DIX domain containing 1 (DIXDC1), Dual specificity phosphatase 6 (DUSP6), Pyruvate dehydrogenase kinase 4 (PDK4), C-X-C motif chemokine ligand 12 (CXCL12), Interferon regulatory factor 7 (IRF7), Integrin subunit alpha 7 (ITGA7), NIMA related kinase 2 (NEK2), and Nuclear receptor subfamily 3 group C member 1 (NR3C1) were selected as BC biomarkers using machine-learning algorithms. NEK2 was the most critical gene for diagnosis. Prospective drugs targeting NEK2 include etoposide and lukasunone.

CONCLUSIONS

Our study identified DIXDC1, DUSP6, PDK4, CXCL12, IRF7, ITGA7, NEK2, and NR3C1 as potential diagnostic biomarkers for BC, with NEK2 having the highest potential to aid in diagnosis and prognosis in clinical settings.

摘要

背景

乳腺癌(BC)的发病率在女性中位居首位,每年新增病例约200万例。因此,研究乳腺癌患者诊断和预后的新靶点至关重要。

方法

我们分析了癌症基因组图谱(TCGA)数据库中99个正常组织和1081个乳腺癌组织的基因表达数据。使用“limma”R包鉴定差异表达基因(DEG),并通过加权基因共表达网络分析(WGCNA)选择相关模块。通过将DEG与WGCNA模块基因匹配获得交集基因。使用基因本体论(GO)、疾病本体论(DO)和京都基因与基因组百科全书(KEGG)数据库对这些基因进行功能富集研究。通过蛋白质-蛋白质相互作用(PPI)网络和多种机器学习算法筛选生物标志物。利用基因表达谱交互式分析(GEPIA)、阿拉巴马大学伯明翰分校癌症(UALCAN)和人类蛋白质图谱(HPA)数据库检测8种生物标志物的mRNA和蛋白质表达。Kaplan-Meier映射工具评估了它们的预后能力。通过单细胞测序分析关键生物标志物,并使用肿瘤免疫估计资源(TIMER)数据库和“xCell”R包检查它们与免疫浸润的关系。最后,基于鉴定出的生物标志物进行药物预测。

结果

我们分别通过差异分析和WGCNA鉴定出1673个DEG和542个重要基因。交集分析揭示了76个基因,它们在免疫相关病毒感染和IL-17信号通路中发挥重要作用。使用机器学习算法,含DIX结构域蛋白1(DIXDC1)、双特异性磷酸酶6(DUSP6)、丙酮酸脱氢酶激酶4(PDK4)、C-X-C基序趋化因子配体12(CXCL12)、干扰素调节因子7(IRF7)、整合素α7亚基(ITGA7)、NIMA相关激酶2(NEK2)和核受体亚家族3组成员1(NR3C1)被选为乳腺癌生物标志物。NEK2是诊断的最关键基因。靶向NEK2的潜在药物包括依托泊苷和卢卡苏诺。

结论

我们的研究确定DIXDC1、DUSP6、PDK4、CXCL12、IRF7、ITGA7、NEK2和NR3C1为乳腺癌潜在的诊断生物标志物,其中NEK2在临床环境中辅助诊断和预后的潜力最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6974/10331707/fc3e8b431b31/tcr-12-06-1466-f1.jpg

相似文献

1
Screening of novel biomarkers for breast cancer based on WGCNA and multiple machine learning algorithms.
Transl Cancer Res. 2023 Jun 30;12(6):1466-1489. doi: 10.21037/tcr-23-3. Epub 2023 Jun 20.
2
Coexpression Module Construction by Weighted Gene Coexpression Network Analysis and Identify Potential Prognostic Markers of Breast Cancer.
Cancer Biother Radiopharm. 2022 Oct;37(8):612-623. doi: 10.1089/cbr.2020.3821. Epub 2020 Oct 14.
6
Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study.
Front Immunol. 2023 Jun 8;14:1184700. doi: 10.3389/fimmu.2023.1184700. eCollection 2023.
10
Identification of hub genes associated with bladder cancer using bioinformatic analyses.
Transl Cancer Res. 2022 May;11(5):1330-1343. doi: 10.21037/tcr-22-1004.

引用本文的文献

1
Identification of biomarkers related to infection for the diagnosis of gastrointestinal tumors applying machine learning methods.
Heliyon. 2024 Nov 16;10(23):e40491. doi: 10.1016/j.heliyon.2024.e40491. eCollection 2024 Dec 15.

本文引用的文献

2
Identification of hub genes in AR-induced tamoxifen resistance in breast cancer based on weighted gene co-expression network analysis.
Breast Cancer Res Treat. 2023 Jan;197(1):71-82. doi: 10.1007/s10549-022-06788-w. Epub 2022 Nov 5.
3
Oncogenic signaling of the free-fatty acid receptors FFA1 and FFA4 in human breast carcinoma cells.
Biochem Pharmacol. 2022 Dec;206:115328. doi: 10.1016/j.bcp.2022.115328. Epub 2022 Oct 26.
5
Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy.
Cell Metab. 2023 Jan 3;35(1):84-100.e8. doi: 10.1016/j.cmet.2022.09.021. Epub 2022 Oct 17.
6
Terminal differentiation and anti-tumorigenic effects of prolactin in breast cancer.
Front Endocrinol (Lausanne). 2022 Sep 8;13:993570. doi: 10.3389/fendo.2022.993570. eCollection 2022.
7
Single-cell meta-analyses reveal responses of tumor-reactive CXCL13 T cells to immune-checkpoint blockade.
Nat Cancer. 2022 Sep;3(9):1123-1136. doi: 10.1038/s43018-022-00433-7. Epub 2022 Sep 22.
8
MX2: Identification and systematic mechanistic analysis of a novel immune-related biomarker for systemic lupus erythematosus.
Front Immunol. 2022 Aug 18;13:978851. doi: 10.3389/fimmu.2022.978851. eCollection 2022.
9
Identification of T cell-related biomarkers for breast cancer based on weighted gene co-expression network analysis.
J Chemother. 2023 Jul;35(4):298-306. doi: 10.1080/1120009X.2022.2097431. Epub 2022 Jul 13.
10
Development and Validation of a Novel PPAR Signaling Pathway-Related Predictive Model to Predict Prognosis in Breast Cancer.
J Immunol Res. 2022 Jun 2;2022:9412119. doi: 10.1155/2022/9412119. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验