文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Multi-omic machine learning predictor of breast cancer therapy response.

作者信息

Sammut Stephen-John, Crispin-Ortuzar Mireia, Chin Suet-Feung, Provenzano Elena, Bardwell Helen A, Ma Wenxin, Cope Wei, Dariush Ali, Dawson Sarah-Jane, Abraham Jean E, Dunn Janet, Hiller Louise, Thomas Jeremy, Cameron David A, Bartlett John M S, Hayward Larry, Pharoah Paul D, Markowetz Florian, Rueda Oscar M, Earl Helena M, Caldas Carlos

机构信息

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.

Department of Oncology, University of Cambridge, Cambridge, UK.

出版信息

Nature. 2022 Jan;601(7894):623-629. doi: 10.1038/s41586-021-04278-5. Epub 2021 Dec 7.


DOI:10.1038/s41586-021-04278-5
PMID:34875674
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8791834/
Abstract

Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy. Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/2d623679aa29/41586_2021_4278_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/b81a2cd1c5e0/41586_2021_4278_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/047c4d8631d8/41586_2021_4278_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/a0fb20d22a12/41586_2021_4278_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/543a6f97010f/41586_2021_4278_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/979d544e8188/41586_2021_4278_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/8c0692d4e9fa/41586_2021_4278_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/22db5b5c664c/41586_2021_4278_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/6c6224983bcd/41586_2021_4278_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/a3d7b2c034f9/41586_2021_4278_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/fde96a0a7149/41586_2021_4278_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/5532ce2f6a5b/41586_2021_4278_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/04d8dff90965/41586_2021_4278_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/735cadc02973/41586_2021_4278_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/2d623679aa29/41586_2021_4278_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/b81a2cd1c5e0/41586_2021_4278_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/047c4d8631d8/41586_2021_4278_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/a0fb20d22a12/41586_2021_4278_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/543a6f97010f/41586_2021_4278_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/979d544e8188/41586_2021_4278_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/8c0692d4e9fa/41586_2021_4278_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/22db5b5c664c/41586_2021_4278_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/6c6224983bcd/41586_2021_4278_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/a3d7b2c034f9/41586_2021_4278_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/fde96a0a7149/41586_2021_4278_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/5532ce2f6a5b/41586_2021_4278_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/04d8dff90965/41586_2021_4278_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/735cadc02973/41586_2021_4278_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e15/8791834/2d623679aa29/41586_2021_4278_Fig14_ESM.jpg

相似文献

[1]
Multi-omic machine learning predictor of breast cancer therapy response.

Nature. 2022-1

[2]
Multimodal diagnostic models and subtype analysis for neoadjuvant therapy in breast cancer.

Front Immunol. 2025-3-18

[3]
Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial.

Ann Oncol. 2017-5-1

[4]
Predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer using a machine learning approach.

Breast Cancer Res. 2024-10-29

[5]
Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer.

Breast Cancer Res. 2024-1-18

[6]
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.

EBioMedicine. 2021-7

[7]
SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis.

Lancet Oncol. 2016-6-14

[8]
Development and validation of machine learning models for predicting HER2-zero and HER2-low breast cancers.

Br J Radiol. 2024-9-1

[9]
Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer.

EBioMedicine. 2022-1

[10]
Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies.

Sci Rep. 2022-6-11

引用本文的文献

[1]
Artificial intelligence as treatment support in breast cancer: current perspectives.

Breast. 2025-8-22

[2]
Artificial Intelligence and Multi-Omics in Pharmacogenomics: A New Era of Precision Medicine.

Mayo Clin Proc Digit Health. 2025-6-26

[3]
DeepAnnotation: A novel interpretable deep learning-based genomic selection model that integrates comprehensive functional annotations.

Gigascience. 2025-1-6

[4]
A review on multi-omics integration for aiding study design of large scale TCGA cancer datasets.

BMC Genomics. 2025-8-22

[5]
HistoChat: Instruction-tuning multimodal vision language assistant for colorectal histopathology on limited data.

Patterns (N Y). 2025-5-30

[6]
A Cohort Study of Pediatric Severe Community-Acquired Pneumonia Involving AI-Based CT Image Parameters and Electronic Health Record Data.

Infect Dis Ther. 2025-8-8

[7]
The immunomodulatory role of tumor-initiating cells in digestive system tumors: from mechanisms to therapy.

Front Immunol. 2025-7-24

[8]
Artificial Intelligence-Based Pathology to Assist Prediction of Neoadjuvant Therapy Responses for Breast Cancer.

Cancer Med. 2025-8

[9]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[10]
Predicting p53 Status in IDH-Mutant Gliomas Using MRI-Based Radiomic Model.

Cancer Med. 2025-8

本文引用的文献

[1]
Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer.

Nat Cancer. 2020-2

[2]
Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells.

Cell. 2020-6-25

[3]
Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance.

Cancer Cell. 2020-4-13

[4]
The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification.

J Appl Stat. 2018

[5]
Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy.

Science. 2018-10-12

[6]
Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.

Nat Med. 2018-8-20

[7]
Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer.

NPJ Breast Cancer. 2018-7-2

[8]
Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials.

Lancet Oncol. 2017-12-11

[9]
The Reactome Pathway Knowledgebase.

Nucleic Acids Res. 2018-1-4

[10]
Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.

Cell. 2017-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索