Laboratory of Radio Toxicology, Commissariat à l'énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France.
Protein-Metal Interactions Laboratory, Commissariat à l'énergie Atomique et aux Energies Alternatives (CEA), Aix Marseille University, Centre National de Recherche Scientifique (CNRS), 13108 Saint Paul-Lez-Durance, France.
Biomolecules. 2022 Oct 24;12(11):1553. doi: 10.3390/biom12111553.
Speciation of actinides, and more particularly bioligand-binding ability, influences in vivo behavior. Understanding these interactions is essential for estimation of radiological dose and improvement of decorporation strategies for accidentally contaminated victims. Because the handling of actinides imposes overwhelming difficulties, in vitro assays carried out in physiological conditions are lacking and data regarding such interactions are scarce. In this study, we used a bi-compartmental and dynamic assay, providing physiological conditions (presence of inorganic ions, pH, temperature) to explore interactions between the actinides plutonium (Pu) and americium (Am) and endogenous (proteins transferrin and ferritin) or exogenous ligands (the chelating agent diethylenetriaminpentaacetic acid, DTPA). In this assay, an agarose gel represents the retention compartment of actinides and a dynamic fluid phase, the transfer compartment. The proportion of actinides transferred from static to dynamic phase reflects interactions between Pu/Am and various ligands. The results show differences in the formation of actinide-protein or actinide-DTPA complexes in physiologically relevant media depending on which ligand is present and where. We observed differential behavior for Pu and Am similar to in vivo studies. Thus, our assay may be used to determine the ability of various actinides to interact with specific proteins or with drug candidates for decorporation in complex physiologically relevant environments.
锕系元素的种属形成,尤其是与生物配体的结合能力,会影响其体内行为。了解这些相互作用对于估计放射性剂量以及改进意外污染受害者的去污染策略至关重要。由于锕系元素的处理带来了巨大的困难,因此缺乏生理条件下的体外检测,并且关于这些相互作用的数据也很少。在这项研究中,我们使用了一种双区室和动态检测法,为探索锕系元素钚(Pu)和镅(Am)与内源性(转铁蛋白和铁蛋白等蛋白质)或外源性配体(螯合剂二乙烯三胺五乙酸,DTPA)之间的相互作用提供了生理条件(存在无机离子、pH 值、温度)。在该检测中,琼脂糖凝胶代表了锕系元素的保留区室,而动态流体相则代表了转移区室。从静态到动态相转移的锕系元素比例反映了 Pu/Am 与各种配体之间的相互作用。结果表明,在生理相关介质中,形成锕系元素-蛋白质或锕系元素-DTPA 复合物的情况因存在的配体以及所处位置的不同而存在差异。我们观察到 Pu 和 Am 的行为存在差异,类似于体内研究的结果。因此,我们的检测方法可用于确定各种锕系元素与特定蛋白质或候选药物在复杂的生理相关环境中相互作用的能力,以用于去污染。