Suppr超能文献

从神经细胞角度看线粒体蛋白生物发生的代谢调控

Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective.

机构信息

TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany.

Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany.

出版信息

Biomolecules. 2022 Oct 29;12(11):1595. doi: 10.3390/biom12111595.

Abstract

Neurons critically depend on mitochondria for ATP production and Ca buffering. They are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mitochondria need to be degraded, while the functional mitochondrial pool needs to be replenished with freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does not explain how a morphologically complex cell such as a neuron adapts to local differences in mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial biogenesis thereby making a case for differential regulation at the transcriptional and translational level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as contact site formation between mitochondria and endolysosomes are required for local mitochondrial biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen in various neurological disorders.

摘要

神经元的 ATP 生成和 Ca 缓冲严重依赖于线粒体。它们是高度分隔的细胞,因此需要不断适应局部需求的精细调节的线粒体网络。为了维持神经元的正常功能,需要降解衰老或受损的线粒体,同时需要用新合成的成分来补充有功能的线粒体池。线粒体生物发生主要通过 PGC-1α-NRF1/2-TFAM 途径在转录水平上进行调节。然而,虽然线粒体基因的转录调控可以改变神经元中线粒体的总体含量,但它并不能解释像神经元这样形态复杂的细胞如何适应线粒体需求的局部差异。在这篇综述中,我们讨论了控制线粒体生物发生的调节机制,从而提出了在转录和翻译水平上进行差异调节的观点。在神经元中,由于编码线粒体蛋白的 mRNA 定位于轴突中,因此可以进行额外的调节。mRNA 搭乘细胞器(包括线粒体)以及线粒体和内溶酶体之间的接触点形成的“搭便车”现象对于轴突中局部线粒体生物发生是必需的,这将缺陷与各种神经紊乱中观察到的线粒体功能障碍联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5da/9687362/dcf4c1e709ed/biomolecules-12-01595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验