Suppr超能文献

利用过采样微观图像的纹理和RGB特征进行白细胞分类

White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images.

作者信息

Rustam Furqan, Aslam Naila, De La Torre Díez Isabel, Khan Yaser Daanial, Mazón Juan Luis Vidal, Rodríguez Carmen Lili, Ashraf Imran

机构信息

School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland.

Department of Software Engineering, University of Management and Technology, Lahore 544700, Pakistan.

出版信息

Healthcare (Basel). 2022 Nov 8;10(11):2230. doi: 10.3390/healthcare10112230.

Abstract

White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.

摘要

白细胞(WBC)类型分类是一项利用白细胞显微图像进行诊断的重要任务,白细胞可产生免疫力以对抗感染和外来物质。白细胞由不同类型组成,一种白细胞的异常可能潜在地代表一种疾病,如白血病。现有研究受到低准确性和过高评估性能的限制,这通常是由于数据集不平衡导致模型过拟合造成的。此外,许多研究考虑的白细胞类型数量较少,且准确性被夸大。本研究提出了一种基于选择性特征和合成少数类过采样技术重采样的混合特征集,以减轻上述问题的影响。此外,采用机器学习模型是因为其计算复杂度较低,训练所需数据较少,并能提供稳健的结果。使用原始数据集、增强数据集和过采样数据集,通过机器学习模型和深度学习模型进行实验以比较性能,从而分析模型的性能。结果表明,使用卡方检验从显微图像中选择的纹理和RGB特征的混合特征集,采用随机森林可产生0.97的高精度。使用k折交叉验证进行性能评估并与现有最先进的研究进行比较表明,所提出的方法在获得的准确性和计算复杂度方面优于现有研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3249/9691098/2cd6f38d45c1/healthcare-10-02230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验