Suppr超能文献

高原地区老年人抑郁症状结构:网络分析。

Symptom Structure of Depression in Older Adults on the Qinghai-Tibet Plateau: A Network Analysis.

机构信息

CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Int J Environ Res Public Health. 2022 Oct 24;19(21):13810. doi: 10.3390/ijerph192113810.

Abstract

Previous studies have confirmed that depression among residents in high-altitude areas is more severe, and that depression may be more persistent and disabling in older adults. This study aims to identify the symptom structure of depression among older adults on the Qinghai-Tibet Plateau (the highest plateau in the world) from a network perspective. This cross-sectional study enrolled 507 older adults (ages 60-80 years old) from the Yushu Prefecture, which is on the Qinghai-Tibet Plateau, China. Depressive symptoms were self-reported using the shortened Center for Epidemiological Studies-Depression Scale (CES-D-10). Then, a Gaussian graphical model (GGM) of depression was developed. Poor sleep, fear, and hopelessness about the future exhibited high centrality in the network. The strongest edge connections emerged between unhappiness and hopelessness about the future, followed by hopelessness about the future and fear; hopelessness about the future and poor sleep; fear and unhappiness; and then poor sleep and unhappiness in the network. The findings of this current study add to the small body of literature on the network structure and complex relationships between depressive symptoms in older adults in high-altitude areas.

摘要

先前的研究已经证实,高海拔地区居民的抑郁程度更为严重,而且老年人的抑郁可能更为持久和致残。本研究旨在从网络角度探讨世界上海拔最高的高原——青藏高原上老年人的抑郁症状结构。这是一项横断面研究,共纳入了 507 名来自中国青海省玉树州的老年人(年龄在 60-80 岁之间)。使用简化的流行病学研究中心抑郁量表(CES-D-10)来报告抑郁症状。然后,构建了一个抑郁的高斯图形模型(GGM)。在网络中,睡眠差、对未来的恐惧和无望感具有较高的中心度。网络中最强的边缘连接出现在不快乐和对未来的无望感之间,其次是对未来的无望感和恐惧、对未来的无望感和睡眠差、恐惧和不快乐,然后是睡眠差和不快乐。本研究的结果增加了关于高海拔地区老年人抑郁症状网络结构和复杂关系的文献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca4e/9659106/6439cc7d7a0d/ijerph-19-13810-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验