Makarenkov Anton V, Kiselev Sergey S, Kononova Elena G, Dolgushin Fedor M, Peregudov Alexander S, Borisov Yurii A, Ol'shevskaya Valentina A
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia.
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia.
Molecules. 2022 Nov 2;27(21):7484. doi: 10.3390/molecules27217484.
An efficient one-pot synthesis of carborane-containing high-energy compounds was developed via the exploration of carbon-halogen bond functionalization strategies in commercially available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of two chlorine atoms in -triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in 1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR- and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation properties of synthesized compounds. The DFT calculation revealed compounds processing the maximum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which allow the opportunity for the remote detection of these compounds.
通过探索市售的2,4,6-三氯-1,3,5-三嗪中的碳-卤键官能化策略,开发了一种高效的一锅法合成含碳硼烷的高能化合物的方法。合成途径首先包括用5-R-四唑(R = H、Me、Et)单元取代三嗪中的两个氯原子,形成二取代的四唑基1,3,5-三嗪,然后用碳硼烷N-或S-亲核试剂依次取代1,3,5-三嗪中剩余的氯原子。所有新化合物均通过红外光谱和核磁共振光谱进行表征。四种新化合物的结构通过单晶X射线衍射分析得到证实。采用密度泛函理论方法(DFT B3LYP/6-311 + G*)研究了合成化合物的几何结构、生成焓(EOFs)、能量性质、最高占据分子轨道和最低未占据分子轨道(HOMO和LUMO)能量以及爆轰性能。DFT计算揭示了具有最大爆速值或最大爆压值的化合物。计算了潜在高能密度材料(HEDMs)的理论太赫兹频率,这为远程检测这些化合物提供了机会。