Rusdan Nisa Afiqah, Timmiati Sharifah Najiha, Isahak Wan Nor Roslam Wan, Yaakob Zahira, Lim Kean Long, Khaidar Dalilah
Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
Nanomaterials (Basel). 2022 Nov 2;12(21):3877. doi: 10.3390/nano12213877.
Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO concentration by 2050. A 45% national reduction in CO emissions has been projected by government to realize net zero carbon in 2030. CO utilization is the prominent solution to curb not only CO but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO conversions into clean fuels and specialty chemicals through catalytic CO hydrogenation and CO reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO conversion into syngas and fuels.
碳密集型产业必须考虑采取碳捕获、利用和存储举措,以在2050年前缓解二氧化碳浓度的上升。政府预计,到2030年全国二氧化碳排放量减少45%,以实现净零碳排放。二氧化碳利用不仅是大规模遏制二氧化碳,也是遏制其他温室气体(如甲烷)的突出解决方案。几十年来,通过催化二氧化碳加氢以及使用绿色氢气和纯甲烷源进行二氧化碳重整,将热催化二氧化碳转化为清洁燃料和特种化学品一直受到关注。然而,由于在苛刻条件下催化剂因积垢、烧结和中毒而迅速失活所导致的热力学和动力学限制,这些工艺在工业应用中仍不成熟。因此,热催化二氧化碳转化的一个关键研究重点是,即使在低温下也要开发高性能和高选择性的催化剂,同时抑制副反应。传统催化剂缺乏精确的结构控制,这对选择性、活性和稳定性都不利。核壳结构是一种最近出现的纳米材料,它具有限域效应,可在二氧化碳转化过程中防止多种功能因烧结而受损。在直接或间接热催化二氧化碳反应(如甲烷化、甲醇合成、费托合成和甲烷干重整)中采用核壳结构已取得了重大进展。然而,核壳催化剂的经济高效且简单的合成方法以及可行的作用机制仍有待开发。本综述深入探讨了近期关于用于热催化二氧化碳转化为合成气和燃料的核壳催化剂的研究工作。