Sokol Maria B, Chirkina Margarita V, Yabbarov Nikita G, Mollaeva Mariia R, Podrugina Tatyana A, Pavlova Anna S, Temnov Viktor V, Hathout Rania M, Metwally Abdelkader A, Nikolskaya Elena D
N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia.
Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia.
Pharmaceutics. 2022 Oct 29;14(11):2333. doi: 10.3390/pharmaceutics14112333.
Currently, molecular dynamics simulation is being widely applied to predict drug-polymer interaction, and to optimize drug delivery systems. Our study describes a combination of in silico and in vitro approaches aimed at improvement in polymer-based nanoparticle design for cancer treatment. We applied the PASS service to predict the biological activity of novel carboplatin derivatives. Subsequent molecular dynamics simulations revealed the dependence between the drug-polymer binding energy along with encapsulation efficacy, drug release profile, and the derivatives' chemical structure. We applied ICP-MS analysis, the MTT test, and hemolytic activity assay to evaluate drug loading, antitumor activity, and hemocompatibility of the formulated nanoparticles. The drug encapsulation efficacy varied from 0.2% to 1% and correlated with in silico modelling results. The PLGA nanoparticles revealed higher antitumor activity against A549 human non-small-cell lung carcinoma cells compared to non-encapsulated carboplatin derivatives with IC values of 1.40-23.20 µM and 7.32-79.30 µM, respectively; the similar cytotoxicity profiles were observed against H69 and MCF-7 cells. The nanoparticles efficiently induced apoptosis in A549 cells. Thus, nanoparticles loaded with novel carboplatin derivatives demonstrated high application potential for anticancer therapy due to their efficacy and high hemocompatibility. Our results demonstrated the combination of in silico and in vitro methods applicability for the optimization of encapsulation and antitumor efficacy in novel drug delivery systems design.
目前,分子动力学模拟正被广泛应用于预测药物 - 聚合物相互作用,并优化药物递送系统。我们的研究描述了一种计算机模拟和体外实验相结合的方法,旨在改进用于癌症治疗的基于聚合物的纳米颗粒设计。我们应用PASS服务预测新型卡铂衍生物的生物活性。随后的分子动力学模拟揭示了药物 - 聚合物结合能与包封效率、药物释放曲线以及衍生物化学结构之间的依赖性。我们应用电感耦合等离子体质谱分析、MTT试验和溶血活性测定来评估所制备纳米颗粒的载药量、抗肿瘤活性和血液相容性。药物包封效率在0.2%至1%之间变化,并且与计算机模拟结果相关。与未包封的卡铂衍生物相比,PLGA纳米颗粒对A549人非小细胞肺癌细胞显示出更高的抗肿瘤活性,其IC值分别为1.40 - 23.20 μM和7.32 - 79.30 μM;对H69和MCF - 7细胞也观察到了类似的细胞毒性谱。纳米颗粒在A549细胞中有效地诱导了细胞凋亡。因此,负载新型卡铂衍生物的纳米颗粒因其有效性和高血液相容性而在抗癌治疗中显示出很高的应用潜力。我们的结果证明了计算机模拟和体外方法相结合在新型药物递送系统设计中优化包封和抗肿瘤功效的适用性。