Suppr超能文献

基于改进箱式法和K均值++聚类的制造商功率曲线修正方法

Modified Approach of Manufacturer's Power Curve Based on Improved Bins and K-Means++ Clustering.

作者信息

Fang Yuan, Wang Yibo, Liu Chuang, Cai Guowei

机构信息

Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Northeast Electric Power University, Jilin 132012, China.

出版信息

Sensors (Basel). 2022 Oct 24;22(21):8133. doi: 10.3390/s22218133.

Abstract

The ideal wind turbine power curve provided by the manufacturer cannot monitor the practical performance of wind turbines accurately in the engineering stage; in this paper, a modified approach of the wind turbine power curve is proposed based on improved Bins and K-means++ clustering. By analyzing the wind speed-power data collected by the supervisory control and data acquisition system (SCADA), the relationship between wind speed and output is compared and elaborated on. On the basis of data preprocessing, an improved Bins method for equal frequency division of data is proposed, and the results are clustered through K-means++. Then, the wind turbine power curve correction is realized by data weighting and regression analysis. Finally, an example is given to show that the power curve of the same type of wind turbines, which, installed in different locations, are discrepant and different from the MPC, and the wind turbine power curve obtained by using this method can reflect the output characteristics of the wind turbine operating more effectively in a complex environment.

摘要

制造商提供的理想风力发电机组功率曲线在工程阶段无法准确监测风力发电机组的实际性能;本文基于改进的Bins和K-means++聚类提出了一种风力发电机组功率曲线的修正方法。通过分析监控与数据采集系统(SCADA)采集的风速-功率数据,比较并阐述了风速与输出之间的关系。在数据预处理的基础上,提出了一种改进的Bins数据等频划分方法,并通过K-means++进行聚类。然后,通过数据加权和回归分析实现风力发电机组功率曲线的修正。最后给出实例表明,同一型号风力发电机组安装在不同位置时,其功率曲线与制造商提供的功率曲线不同,采用该方法得到的风力发电机组功率曲线能更有效地反映风力发电机组在复杂环境下运行的输出特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5471/9656117/e6a1c57f195c/sensors-22-08133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验