Suppr超能文献

基于注意力机制融合ResNet模型的混沌医学图像加密方法

Chaotic medical image encryption method using attention mechanism fusion ResNet model.

作者信息

Li Xiaowu, Peng Huiling

机构信息

Information Department, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.

School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan, China.

出版信息

Front Neurosci. 2023 Jul 13;17:1226154. doi: 10.3389/fnins.2023.1226154. eCollection 2023.

Abstract

INTRODUCTION

With the rapid advancement of artificial intelligence (AI) technology, the protection of patient medical image privacy and security has become a critical concern in current research on image privacy protection. However, traditional methods for encrypting medical images have faced criticism due to their limited flexibility and inadequate security. To overcome these limitations, this study proposes a novel chaotic medical image encryption method, called AT-ResNet-CM, which incorporates the attention mechanism fused with the ResNet model.

METHODS

The proposed method utilizes the ResNet model as the underlying network for constructing the encryption and decryption framework. The ResNet's residual structure and jump connections are employed to effectively extract profound information from medical images and expedite the model's convergence. To enhance security, the output of the ResNet model is encrypted using a logistic chaotic system, introducing randomness and complexity to the encryption process. Additionally, an attention mechanism is introduced to enhance the model's response to the region of interest within the medical image, thereby strengthening the security of the encrypted network.

RESULTS

Experimental simulations and analyses were conducted to evaluate the performance of the proposed approach. The results demonstrate that the proposed method outperforms alternative models in terms of encryption effectiveness, as indicated by a horizontal correlation coefficient of 0.0021 and information entropy of 0.9887. Furthermore, the incorporation of the attention mechanism significantly improves the encryption performance, reducing the horizontal correlation coefficient to 0.0010 and increasing the information entropy to 0.9965. These findings validate the efficacy of the proposed method for medical image encryption tasks, as it offers enhanced security and flexibility compared to existing approaches.

DISCUSSION

In conclusion, the AT-ResNet-CM method presents a promising solution to address the limitations of traditional encryption techniques in protecting patient medical images. By leveraging the attention mechanism fused with the ResNet model, the method achieves improved security and flexibility. The experimental results substantiate the superiority of the proposed method in terms of encryption effectiveness, horizontal correlation coefficient, and information entropy. The proposed method not only addresses the shortcomings of traditional methods but also provides a more robust and reliable approach for safeguarding patient medical image privacy and security.

摘要

引言

随着人工智能(AI)技术的迅速发展,患者医学图像隐私和安全的保护已成为当前图像隐私保护研究中的一个关键问题。然而,传统的医学图像加密方法因其灵活性有限和安全性不足而受到批评。为了克服这些限制,本研究提出了一种新颖的混沌医学图像加密方法,称为AT-ResNet-CM,它融合了注意力机制与ResNet模型。

方法

所提出的方法利用ResNet模型作为构建加密和解密框架的基础网络。ResNet的残差结构和跳跃连接被用于有效地从医学图像中提取深层信息并加速模型的收敛。为了增强安全性,使用逻辑混沌系统对ResNet模型的输出进行加密,为加密过程引入随机性和复杂性。此外,引入注意力机制以增强模型对医学图像中感兴趣区域的响应,从而加强加密网络的安全性。

结果

进行了实验模拟和分析以评估所提出方法的性能。结果表明,所提出的方法在加密有效性方面优于替代模型,水平相关系数为0.0021,信息熵为0.9887。此外,注意力机制的加入显著提高了加密性能,将水平相关系数降低到0.0010,并将信息熵提高到0.9965。这些发现验证了所提出方法在医学图像加密任务中的有效性,因为与现有方法相比,它提供了更高的安全性和灵活性。

讨论

总之,AT-ResNet-CM方法为解决传统加密技术在保护患者医学图像方面的局限性提供了一个有前景的解决方案。通过利用与ResNet模型融合的注意力机制,该方法实现了更高的安全性和灵活性。实验结果证实了所提出方法在加密有效性、水平相关系数和信息熵方面的优越性。所提出的方法不仅解决了传统方法的缺点,还为保护患者医学图像隐私和安全提供了一种更强大、更可靠的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfb6/10373303/27a42232c5ad/fnins-17-1226154-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验