Department of Computer Engineering, Jeju National University, Jeju 63243, Korea.
Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science & Technology, Jeju National University, Jeju 63243, Korea.
Sensors (Basel). 2022 Nov 6;22(21):8550. doi: 10.3390/s22218550.
Rapid advancements in the medical field have drawn much attention to automatic emotion classification from EEG data. People's emotional states are crucial factors in how they behave and interact physiologically. The diagnosis of patients' mental disorders is one potential medical use. When feeling well, people work and communicate more effectively. Negative emotions can be detrimental to both physical and mental health. Many earlier studies that investigated the use of the electroencephalogram (EEG) for emotion classification have focused on collecting data from the whole brain because of the rapidly developing science of machine learning. However, researchers cannot understand how various emotional states and EEG traits are related. This work seeks to classify EEG signals' positive, negative, and neutral emotional states by using a stacking-ensemble-based classification model that boosts accuracy to increase the efficacy of emotion classification using EEG. The selected features are used to train a model that was created using a random forest, light gradient boosting machine, and gradient-boosting-based stacking ensemble classifier (RLGB-SE), where the base classifiers random forest (RF), light gradient boosting machine (LightGBM), and gradient boosting classifier (GBC) were used at level 0. The meta classifier (RF) at level 1 is trained using the results from each base classifier to acquire the final predictions. The suggested ensemble model achieves a greater classification accuracy of 99.55%. Additionally, while comparing performance indices, the suggested technique outperforms as compared with the base classifiers. Comparing the proposed stacking strategy to state-of-the-art techniques, it can be seen that the performance for emotion categorization is promising.
医学领域的快速发展引起了人们对从 EEG 数据中自动进行情绪分类的极大关注。人们的情绪状态是他们生理行为和互动的关键因素。诊断患者的精神障碍是一种潜在的医学用途。当人们感觉良好时,他们的工作和沟通效率更高。负面情绪会对身心健康造成不利影响。许多早期研究都集中于从整个大脑收集数据,以利用机器学习这一快速发展的科学,来研究使用脑电图 (EEG) 进行情绪分类。然而,研究人员无法理解各种情绪状态和 EEG 特征之间的关系。这项工作旨在通过使用基于堆叠集成的分类模型对 EEG 信号的积极、消极和中性情绪状态进行分类,从而提高准确性,提高使用 EEG 进行情绪分类的效果。选择的特征用于训练一个模型,该模型是使用随机森林、轻梯度提升机和基于梯度提升的堆叠集成分类器 (RLGB-SE) 创建的,其中随机森林 (RF)、轻梯度提升机 (LightGBM) 和梯度提升分类器 (GBC) 被用作 0 级的基本分类器。使用每个基本分类器的结果在 1 级训练元分类器 (RF),以获得最终的预测结果。建议的集成模型实现了 99.55%的更高分类准确性。此外,在比较性能指标时,与基本分类器相比,建议的技术表现更好。将提出的堆叠策略与最新技术进行比较,可以看出,用于情绪分类的性能很有前景。